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The simulations of incompressible flows (INS) encounter the decoupling be-
tween pressure and velocity. To advance the pressure field, numerical schemes
which involve solving an additional equation such as the Poisson equation for
the pressure correction might be used. Solving the elliptic linear algebra system
introduced by pressure Poisson equation is usually the most severe obstacle for
both reducing the computational cost or taking advantage of highly parallelism
hardware like graphics processing unit (GPU) due to the limitation of parallel
efficiency or memory bounded operations.

Instead of solving the pressure Poisson equation, a fully explicit approach
with locality stencils for the simulation of incompressible flow is desired. Chorin
[1] proposed the artificial compressibility method (ACM), in which artificial
compressibility was introduced into the continuity equation as shown in eq.1a,
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where δ is the inverse of the square of the artificial speed of sound Cs, i.e.
C2
s = 1/δ. The AC method was used to obtain steady incompressible flows,

so the intermediate results before the final steady-state solutions using large
time-step does not satisfy the divergence-free condition. Recently, Toutant [2]
derived the general pressure equation (GPE) based on the isothermal limit and
low Mach number assumption, as shown in eq.1b. Despite the successes of
many low Reynolds number flow simulations using GPE [3], the capability of
the GPE method to compute turbulent flows, which to the author’s knowledge
has not been explored. Therefore, the GPE based method is used to perform
the direct numerical simulation (DNS) of turbulent lid-driven cavity (LDC)
flow of Re = 3200 and fully developed turbulent flow through a square duct of
Reτ = 360.
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The governing equations for the simulation of incompressible flow by general
pressure equation [3] and the momentum equation are given by
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where P is the kinematic pressure, u is the velocity and Fi represents an external
forcing term, γ,Re,Pr are the heat capacity ratio, Reynolds number and Prandtl
number respectively. The Mach number is defined as Ma = uc/Cs, where Cs
is the artificial sound speed and uc is the characteristic velocity in the flow
field. γ/Pr is regarded as a numerical parameter. Eqs.2 and 3 converge to the
INS equations with an error of O(Ma). The governing equations (eq.2-3) are
discretized on a non-uniform staggered grid where pressure is stored at the center
of control volume and velocities are stored at the interface by using finite-volume
approach. Spatial derivatives for velocities and pressure are approximated by
second-order central difference scheme. The temporal integration is performed
using the 3rd order TVD Runge-Kutta scheme [4].

In the present work, a GPU implementation is built on a hybrid of message
passing interface (MPI) and CUDA based on the C++ programming language,
in which CPUs are only responsible for the program flow control and file IO.
The flow variables are organized by structure of arrays (SoA) format in the GPU
memory.

In the present work, the turbulent flow within a cubic cavity of Reynolds
number Re = ulidL/ν = 3200, based on lid velocity and cavity height (L = 1), is
explored. The grid density adopted is 1923, which is symmetry clustered towards
the wall in the x, y, and z-directions. The distributions of mean velocity and
the Reynolds stress along the wall bisector (x, 0.5, 0.5) and (0.5, 0.5, z) at the
symmetry plane are presented in Fig. 1. Here the experimental data of Prasad
et al. [5] and results of incompressible Navier-Stokes (INS) solver are included
for comparison. The results calculated by the GPE method agree well with both
the experiments and INS simulations.

Turbulent flows along a square duct are characterized by the existence of
mean secondary flows of the Prandtl’s second kind which appreciably alter the
transfer of momentum and scalar quantities near the walls albeit with its rel-
evantly small magnitude (only 1% to 3% of the streamwise bulk velocity). In
the present work, the Reynolds number has been kept being 360 based on the
friction velocity uτ and the height of the duct H, corresponding to a Reynolds
number of 5180 based on bulk velocity ub. A corresponding grid number is
384× 192× 192 where a nonuniform grid is used.

The contours of the mean streamwise velocity superimpose on the vector field
is shown in Fig. 2(a). The bulging of the streamwise velocity contours, induced
by the secondary velocities, towards the corners is evident. For comparison, an
instantaneous flow field at x = π plane is shown Fig, 2(b).The mean streamwise
velocity distribution normalized with the local friction velocity along the lower
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wall bisector is given in Fig. ?? and compared with the DNS data of channel flow
of Reτ = 180. The present result is in good agreement with the simulation of
Moser et al. [6]. Distributions of the mean streamwise velocity and V component
of the secondary velocity normalized by the maximum mean streamwise velocity
are shown in Fig. 3. Good correspondence with results of Gavrilakis [7] is
obtained, indicating the accurate predictions of the secondary flows.

1. Conclusion

In the present study, the velocity and pressure coupling is achieved by adopt-
ing the general pressure equation proposed by Toutant [2]. The method is fully
explicit, and the method does not require either solving the pressure Poisson
equation nor executing sub-iteration for incompressible flow simulation. Here,
the general pressure equation-based method is used to perform the direct nu-
merical simulation of turbulent lid-driven cavity flow at Re = 3200 and fully
developed turbulent flow through a square duct at Reτ = 360. Predicted turbu-
lence statistics are contrasted with existing numerical and experimental data,
providing an excellent quantitative agreement. The intricate flow patterns such
as the Taylor-Görtler-Like vortices in LDC flow and the mean secondary flow at
the cross-section in the square duct are captured, showing both qualitative and
quantitative agreements with measurements. Results from the present study in-
dicate the capability of the GPE method for accurate incompressible turbulent
flow calculation.
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Figure 1: (a) Mean and (b) Reynolds stress profile along the horizontal and vertical centerlines
in the symmetry plane. The symbols are experimental results of Prasad et al. [5].
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Figure 2: (a) Contours of mean streamwise velocity and velocity vectors of mean secondary
flow. (b) Instantaneous streamwise velocity contours and secondary velocity vector at x = π.
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Figure 3: Comparison of the calculated mean (a) streamwise and (b) spanwise velocity profile
with the simulations of Gavrilakis [7].
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