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Abstract. Our in-house code is developed as a high order finite volume solver with
Adaptive Mesh Refinement (AMR) capabilities. Spatial accuracy is achieved via Central
Essentially Non-Oscillatory (CENO) scheme, while temporal accuracy is given by Runge-
Kutta scheme. The CENO scheme works with a fix central stencil, which is generated
by using ghost cells at boundaries. In order to reduce the memory requirement of re-
construction stencils at refinement interfaces, we coded the refinement as a block based
rather than cell based. To test the adaptive mesh refinement capabilities of the code, we
solved two test cases, forward facing step flow, and a type VI shock-shock interaction.
For both cases the solutions show that the refinement is carried along regions with shocks
and/or discontinuities.

1 INTRODUCTION

One of the scope of CFD Vision 2030 [1] is to address the reliability of modern Com-
putational Fluid Dynamics codes. The missing element of the puzzle is to decrease all
form of errors. Nowadays high order methods are good candidates for this aim.

The main advantage of high order methods is the reduction of the number of elements
present in the domain. In literature several scheme are available, such as Essentially Non-
Oscillatory scheme (ENO) [2], Weighted ENO (WENO) [2], Central ENO (CENO) [3],
etc. Among all, the CENO scheme has the advantage to work always on the same central
stencil, reducing the time needed for spatial interpolation within cells.

To further boost the potential of high order scheme one can couple it with adaptive
mesh refinement [3]. By starting with a coarse mesh the solver automatically adapts
the mesh where discontinuities or shock waves are present. This technique gives the
same accuracy of the solution obtained with the finest resolution all over the domain.
Furthermore the total execution time is decreased.

The aim of this paper is to solve the supersonic backward facing step flow and a type VI
shock-shock interaction with a high order code by adapting the mesh to the flow solution.
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2 NUMERICAL METHOD

Our in-house code is a high order finite volume solver. The CENO scheme [3] computes
the spatial reconstruction within each cell. As of today, the highest order of accuracy in
space available in the code is 5th order. For unsteady solution, the classic Runge-Kutta
[4] is used as temporal interpolation scheme. The user can chose among 1st and 4th order
approximation in time.

Our solver uses the Advection Upstream Splitting Method (AUSM) [5] family scheme
as flux splitting method. Within the code the users can opt for 6 different AUSM schemes
[5, 6, 7, 8, 9, 10].

The CENO scheme uses a Smoothness Indicator (S) to flag cells which are not fully
resolved by the high order interpolation.

S =
α

max (1 − α, ε)

NSOS −NDOF

NDOF − 1
, (1)

where NSOS, NDOF are the number of unknown and the size of the stencil for the re-
construction, ε is the machine accuracy, and α is evaluated as in [11]. This indicator
recognizes discontinuities and shock waves.

By coupling S with a h-type refinement through the following formula:

R = e
−

max(0, S)

USSC , (2)

the code is adapting the mesh in regions where cells are flagged as under-resolved. In
Eq. 2 R is the refinement parameter, US is a scaling coefficient, and SC is the cut-off
value [11]. It is clear that R assumes values between (0, 1]. A value close to 1 flags the
region as refinable and viceversa.

Considering the work load generated by the high order methods, one is keen to adopt
parallelization paradigm. Our code takes advantage of shared memory parallelism via
openMP [12].

3 RESULTS

The first problem consists of a supersonic flow at Mach 3 confined into a channel with
a step. The initial conditions and boundary conditions are the same of Woodward [13].

We obtained the solution of this problem with the AUSM+up flux splitting scheme [6],
a 5th order CENO spatial scheme and a 4th order Runge Kutta temporal scheme, where the
maximum refinement level is set as 5. The initial mesh consists of 3 blocks and about 900
cells, where the coarse resolution is 0.01 along both directions. When the simulation time
reaches 4 seconds, the mesh consists of 393 blocks, and the finest resolution is 3.25 · 10−4.
The block distribution is shown in Fig. 1 along with the density contour. We observe that
the refinement is carried along regions which are crossed by shocks and/or discontinuities.

The second problem analyzed is a type VI shock-shock interaction at Mach 9. The
problem is set as in Schwing [14].
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Figure 1: Blocks and density contour of the forward facing step flow of M = 3 at t = 4(s)

Figure 2: Blocks and density contour of the type VI shock-shock interaction of M = 9.

This solution is obtained with the same solver configuration of the previous case, but as
flux splitting method we used AUSMPWM [10] and the maximum number of refinement is
set as 4. The initial domain is formed by 3 blocks. When the simulation is over, solutions
consists of 391 blocks, which are shown in Fig. 2. For this case, the coarse resolution is
0.0333 while the finest resolution is 0.002. As previously observed, the refinement follows
the shocks and discontinuities.

4 CONCLUSIONS

Our in-house finite volume solver is used to compute two inviscid supersonic flows:
forward facing step flow and type VI shock-shock interaction. We successfully coupled
adaptive mesh refinement with central non oscillatory spatial scheme and AUSM flux
splitting methods. The developed code is capable of refining the domain where shocks or
discontinuities are present.
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An interesting future work would be a comparison between WENO, ENO and CENO
schemes for supersonic applications. Furthermore, our in-house code can be extended to
solve viscous flows.
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