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Abstract. This talk focuses on the acceleration of the Schwarz method by the Aitken’s
acceleration of the convergence technique with taken into account the special structure
of the error operator. This allows an enhancement of the building of the low rank space
approximating the solution at the gathered interfaces of all subdomains computed by
singular values decomposition of the sequence of iterated solutions presents in the Aitken-
Schwarz technique. The new method Sparse-Aitken Schwarz method builds low rank
spaces associated to each subdomain’s interfaces. Comparisons between Aitken-Schwarz
and Sparse-Aitken Schwarz results obtained on a 3D Darcy flow application show the
improvement by using the special structure of the propagation error operator.

1 INTRODUCTION

Schwarz domain decomposition methods is nowadays widely used to solve linear prob-
lems of the form Ax = b because it is well suited for parallel computing. Indeed, it is
based on the splitting of the global problem into subproblems. Artificial boundary con-
ditions arise from the decomposition of the domain into subdomains. Then, the Schwarz
method consists of the solution of subproblems, and the update of the artificial boundary
conditions. In practice, this implies local communications between neighboring subdo-
mains. The main drawback of Schwarz domain decomposition methods is the slow con-
vergence, that depends on the nature of the problem, the geometry of the subdomains
and the overlap. There exist several method for the acceleration of convergence, they
are all based on the solution of small problem coupling all subdomains. The classical
Aitken-Schwarz method [GTD02](A−S: the dash is to avoid the confusion with Additive
Schwarz ) consists in the approximation of the interface problem [TD09], and its solution
via the Aitken’s formula. In this talk, we take into account the sparsity structure of the
of error propagation operator to build low rank approximations of the solution associated
to individual artificial interface. The resulting method named the Sparse Aitken-Schwarz
(SA-S) method shows better results of convergence and good parallel efficiency on 3D
Darcy flow problem.
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2 Numerical acceleration of the Schwarz method

A domain of n unknowns is split in N overlapping subdomains. The ith subdomain
has ni if the overlap is included, or ñi if the overlap is excluded. In that case, n = ΣN−1

i=0 ñi.

Let Ri ∈ Rni×n (respectively R̃i ∈ Rni×n) be the restriction operator of a global vector
to the ith subdomain, including the overlap (respectively setting to 0 the components of
the overlap). The additive Schwarz method with Dirichlet boundary conditions on the
artificial boundary conditions can be written as the Richardson process:

xk+1 = xk +M−1
RAS

(
b− Axk

)
(1)

with the matrix M−1
RAS is the Restricted Additive Schwarz (RAS) preconditioner :

M−1
RAS =

N−1∑
i=0

R̃T
i

(
RiAR

T
i

)−1
Ri =

N−1∑
i=0

R̃T
i A
−1
i Ri. (2)

If x∞ is the exact solution of the linear system Ax = b, and xk the solution at the kth
Schwarz iteration, then subtracting two Schwarz iterations:

xk − x∞ =
(
I −M−1

RASA
) (
xk−1 − x∞

)
(3)

which shows the purely linear convergence. This property still holds if we consider only
the artificial interfaces. Let RΓ be the operator that restrict a vector to the artificial
interface. The restriction of Eq.(1) to the interface is

RΓM
−1
RASAR

T
Γ︸ ︷︷ ︸

I−P

RΓx︸︷︷︸
y

= RΓM
−1
RASb︸ ︷︷ ︸
c

. (4)

where the matrix P := RΓ

(
I −M−1

RASA
)
RT

Γ is the error propagation operator since
ek+1 = Pek if ek = yk − y∞ is the error on the interface at iteration k. If the matrix
[ynΓ − ynΓ−1, · · · , y1 − y0] is not singular,the error propagation operator P can be com-
puted as: P = [ynΓ+1 − ynΓ , . . . , y2 − y1] [ynΓ − ynΓ−1, . . . , y1 − y0]

−1
. The solution y∞

can be computed as:
y∞ = (I − P )−1 (ynΓ+1 − PynΓ

)
. (5)

In practice, it may not be possible to use the exact acceleration for 2D and 3D problems
because it requires nΓ + 1 Schwarz iterations, where nΓ is the number of unknowns on the
artificial interface. Then, the acceleration is approximated in a low-dimensional space U
and an approximated propagation error operator P̂ .

Eq.(5) can be written as (6) that requires the inversion of a matrix of size l << nΓ.

y∞ ≈ ỹ∞ = U
(
I − P̂

)−1 (
UTyq − P̂UTyq−1

)
(6)

The Aitken’s acceleration is given in Algorithm 1. The step 3 of this algorithm is the
restriction of the Schwarz iterations to the interface, which is implemented as in Eq.(1).
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Algorithm 1 Approximated Aitken’s Acceleration

Require: y0 an initial guess
1: repeat
2: for i = 1 . . . q do
3: yi ← Pyi−1 + c //Schwarz iterations
4: end for
5: Compute a matrix U with orthonormal columns such that yq and yq−1 ∈ span(U)

6: Compute P̂ an approximation of UTPU

7: y0 ← U
(
I − P̂

)−1 (
UTyq − P̂UTyq−1

)
8: until convergence

Each iteration of the step 3 requires the solution of the local problems and the exchange
of the artificial boundary conditions. It has been considered that the operator P was
approximated from q + 1 successive Richardson’s iterations. In step 5 the U is computed
with the SVD of the matrix [y0, . . . , yq] = UΣV T . So far, the approximation P̂ of P given
by UPUT was a full matrix but in fact the matrix P can be very sparse. We propose
a new methods, called sparse Aitken-Schwarz, to approximate the Aitken’s acceleration
that preserves the null blocks of the matrix P corresponding to independent subdomains.

For two subdomains, let denote by vi0 and vi1 the solutions at the interface of the
two subdomains at the ith iteration. We also denote by RΓ0 and RΓ1 the restriction
operators to these two interfaces. Then, vi0 = RΓ0x

i. The purely linear convergence of the

Schwarz process can be written as

[
vi+1

0 − vi0
vi+1

1 − vi1

]
= RΓ

(
I −M−1

RASA
)
RT

Γ

[
vi0 − vi−1

0

vi1 − vi−1
1

]
where

the matrix P = RΓ(I −M−1
RASA)RT

Γ can be decomposed P =

[
0 P0

P1 0

]
.

Let en0 = vi+1
0 − vi0 and ei1 = vi+1

1 − vi1 then:

P0

[
e0

1, . . . , e
q−1
1

]
=
[
e1

0, . . . , e
q
0

]
and P1

[
e0

0, . . . , e
q−1
0

]
=
[
e1

1, . . . , e
q
1

]
. (7)

In order to approximate the acceleration in low dimensional space, we compute inde-
pendently the SVD of the trace of each interface. UiΣiV

T
i = [v0

i , . . . , v
q+1
i ] for i = 0, 1.

Then {
P̂0 :=

(
UT

0 [e1
0, . . . , e

q
0]
) (
UT

1

[
e0

1, . . . , e
q−1
1

])−1 ≈ UT
0 P0U1

P̂1 :=
(
UT

1 [e1
1, . . . , e

q
1]
) (
UT

0

[
e0

0, . . . , e
q−1
0

])−1 ≈ UT
1 P1U0.

(8)

The approximation preserving the diagonal null blocs of the matrix P is

P ≈

[
0 U0P̂0U

T
1

U1P̂1U
T
0 0

]
=

[
U0 0
0 U1

]
︸ ︷︷ ︸

U

×

[
0 P̂0

P̂1 0

]
︸ ︷︷ ︸

P̂

×
[
U0 0
0 U1

]T
︸ ︷︷ ︸

UT

. (9)

The Aitken’s acceleration is computed after q iterations, the dimension of the Krylov
subspace is q + 1. The matrix U has l ≤ 2q + 2 columns linearly independent, spanning
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a subspace larger than the Krylov subspace if l > q + 1. The Aitken’s acceleration in
which each blocs of P has been approximated independently is more suitable for parallel
computing because there is one SVD per interface instead of one global SVD.

3 Parallel performances

The groundwater flow in saturated media can be modelled using the Darcy’s laws and
the conservation of mass that gives Eq.(10), where u is the hydraulic head K(x, y, z) is
the permeability field.{

∇. (K(x, y, z) ∇u) = 0 in Ω
u = α, on ΓL, u = β, on ΓR,

∂u
∂n

= 0, on ∂Ω \ (Γ1 ∪ Γ2)
(10)

The domain Ω is a parallelepiped, with two Dirichlet boundary conditions on the left ΓL

and right ΓR wall, and homogeneous Neumann boundary conditions on the other walls.
The problem is discretized using a standard 7 points stencil on a regular grid.

In order to test the weak scaling of our implementation, we set the size of one subdomain
to 512× 512× 256, and we increase the number of subdomains. Nine Schwarz iterations
are computed before the acceleration, and one after. Table 1 shows the computational
times and their repartition. The total number of Schwarz iterations is 10 for all considered

Table 1: Repartition of the computational time of SA−S(9)

Subd. Cores Time (s) Local solution Aitken Exchanges Remaining
2 512 752 99.444% 0.123% 1.54× 10−3% 0.431%
4 1024 811 99.051% 0.186% 2.86× 10−3% 0.761%
8 2048 828 98.548% 0.168% 4.35× 10−3% 1.280%
16 4096 817 98.063% 0.208% 5.00× 10−3% 1.724%

Dirichlet b.c. of 1.0 on the left and 10.0 on the right. 8 overlapping points between each subdomains.

Subproblems solved by FGMRES preconditioned by Hypre with a relative tolerance of 10−12.

sizes of meshes. This means that the required tolerance ‖b−Ax‖2/‖b‖2 < 10−5 has been
reached after the first acceleration.
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