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Summary. We consider an algorithm for solving problems related to the process of radiative 
heat conduction, which is well adapted to the architecture of systems with extra-massive 
parallelism. The technique is based on including a term with a small parameter of the second 
time derivative. The computation results using the new scheme on detailed spatial meshes and 
their comparison with the classical radiative heat conduction model are presented.  
 
1 INTRODUCTION  

Radiative heat conduction describes the process of heat transfer via radiation in optically 
thick media1, which is typical of high-temperature gas-dynamic processes. This model is 
applied in astrophysics, dense laser plasma technologies2, thermonuclear fusion3, etc. 

The divergence of heat flux due to radiation W  is described as 
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T is the temperature, σ is the Stefan-Boltzmann constant, l is the Rosseland mean free path 
of the photon. Assuming that the heat capacity coefficient is constant, and the motion of the 
medium is neglected, we obtain the parabolic equation of radiative heat conduction: 
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Q is the given heat source, and Cv is the heat capacity. 

2 HYPERBOLIC MODEL FOR THE RADIATIVE HEAT CONDUCTION  
One can use both explicit and implicit difference schemes to solve this equation. Implicit 

schemes offer an advantage of absolute stability, but they drastically lose the efficiency of 
parallel processing when using a large number of processors (cores). This problem is crucial 
for advanced computing systems with GPU accelerators. Explicit schemes do not reduce 
parallel efficiency, but they suffer a very strict limitation of the allowable time step4  
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Therefore explicit schemes are impractical for detailed spatial meshes essentially using 
parallel computations. As concerns radiative heat conduction, the time step ∆t is further 
restricted because of a strong increase in the heat conductivity coefficient l  in eq. (2) with 
increasing temperature. The possible way out of this seeming deadlock situation is the use of 
the hyperbolic model of thermal conduction which has already been used for fast processes5: 
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As appears from physical considerations, the solutions of equations (1) and (3) will differ 
slightly, if the following condition is satisfied: 
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 , where tproс is the characteristic time of the process. 

The idea of reducing parabolic equations to a hyperbolic form arose from an analogy with 
the quasi-gas-dynamic system6, which is a hyperbolic system, differing from the Navier-
Stokes equations by the terms of the second order of smallness in relation to the Knudsen 
number O(Kn2). A theoretical analysis of the solution of the linear analogue of the equation 
(3) and its comparison with the solution of the linear analogue of the equation (1) was carried 
out in 7,8. The conservation laws for a hyperbolic equation of type (3) were formulated in 9. 

3 EXPLICIT SCHEMES FOR THE HYPERBOLIC HEAT EQUATION  

We choose the small parameter ε to be a value proportional to the ratio of the spatial size 
of the mesh cell h to the characteristic rate of the process V: ε < h / V.  

Such a choice provides the required accuracy of the solution of the equation (3) and its 
proximity to the solution of the parabolic equation (1). The theoretical estimates10 showed that 
it makes possible to solve equation (3) using an explicit scheme with an acceptable time step: 

∆t ≤ a·h3/2
 

(4) 

The restriction (4) is more reasonable than the condition (2). The advantages of condition 
(4) are especially evident on detailed spatial meshes, allowing a real possibility of using 
explicit schemes for parallel computing. However, even milder stability condition similar to 
the Courant condition was observed in the presented computational experiments: ∆t ≤ a⋅h. 

We apply a three-layer difference scheme for solving the hyperbolic equation (3). With a 
constant ∆t, the approximation of time derivatives is as follows: 
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(j–1), j, and (j+1) are successive time layers. The spatial derivatives are approximated in 
the point i at the central time layer t = t j, as well as the coefficient l  depending on the known 
temperature T j. Thus the temperature values T j+1 on the layer (j+1) are computed using the 
already known values T j and T j-1. This scheme provides O(∆t2) order of convergence.  

4 NUMERICAL RESULTS 
The aim of the numerical tests was the stability study of the explicit scheme (5) for the 

hyperbolic heat equation (3), and comparison of hyperbolic (3) and parabolic (1) solutions.  

A model problem was examined: ( )
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; α = 3; α = 4.5; k0 = 1. 

3D numerical solution on a regular mesh 1003 with the same time step using an implicit 
two-layer scheme for the parabolic equation (1) and that using the explicit tree-layer scheme 
(5) for the hyperbolic model (3), ε =5·10-3, differ in norm C by less than 1%. The difference 
decreases with the mesh refinement. 1D results on a regular mesh (1000 points) differ by the 
5th digit only. 

Fig. 1 – Stability condition for the explicit scheme: left – 1D , right – 3D. 

Figure 1 (left) shows the dependence of the maximum permissible time integration step ∆t 
on the spatial mesh step h. We found the stability condition 1t a h∆ ≤  for the scheme (5) with 
a1 depending on ε and α, and 2

2ht a∆ ≤  for the parabolic equation (1) using an explicit two-
layer scheme. Figure 1 (right) presents the results of 3D numerical experiments on rectangular 
meshes. Similar results were also obtained on tetrahedral meshes. 

Explicit schemes are well fitted to the architecture of HPC systems, including multi-level 
parallelism using MPI/OpenMP/Cuda for CPU-GPU clusters. We have already accumulated a 
wealth of experience in spatial approximation of the term div l grad T  on various kinds of 
unstructured spatial meshes and octree meshes with adaptive mesh refinement. In these cases 
an implicit scheme deals with a distributed sparse matrix for the appropriate system of linear 
algebraic equations. An iteration procedure requires additional data exchanges, and its 
convergence may not be always evident. Therefore the above explicit scheme is preferable, 
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especially for numerical study of fine structures and/or fast processes. 

5 APPLICATION TO CFD: SIMULATION OF LASER TARGET COMPRESSION 
One of the prominent areas to use the above approach is the radiative hydrodynamic 

simulations of DT target in the indirectly driven inertial confinement fusion scheme3. We 
investigated the influence of physical and numerical instabilities on the resulting target 
dynamics in a simplified approximation (one temperature – one fluid hydrodynamics with 
two-term equation of state2). The radiative heat conduction emulated the target irradiation. 
We used a power-law dependency ( ) 32

1, CCl T C Tρ ρ −=  for the photon mean free path, and the 
experimental temperature dynamics3 T(t) was applied at the boundary. 

Preliminary 1D simulations using lagrangian code in spherical geometry have shown a 
good agreement of the target dynamics with the experimental shadowgraphs. We have used 
completely implicit full conservative numerical scheme for these simulations and expected 
that iteration convergence rate and timestep would be the similar in 3D Cartesian setting with 
the same cell size. However, in 3D we met a number of difficulties related to the thermal 
conduction: usage of implicit scheme with a reasonable step ∆t led to a very slow 
convergence rate even on relatively meager grid 2563. Explicit scheme, on the other hand, 
while being computationally saving on one time step, required too low ∆t value to fulfill 
stability restrictions. The hyperbolic model allowed overcoming these difficulties. 

6 CONCLUSIONS 
The hyperbolic model of thermal conductivity with the second time derivative coefficient 

being a small parameter ε is a useful tool for numerical simulation of radiative heat transfer. 
The optimal ε value was defined that provides both the proximity to the classical parabolic 
solution, as well as a noticeable computational effectiveness when using explicit schemes. 
These advantages are especially pronounced in comparison with the parabolic model when 
the use of detailed spatial meshes is supported by HPC systems with hybrid architecture.  
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