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Abstract. The feasibility and accuracy of two methods for simulating moving bodies
inside a fluid are studied. Different cases are presented using the Immersed Boundary
Method and the Sliding Mesh technique. The results obtained by both methods are
compared and assessed. These results allow to study the accuracy of both methods as
well as their computational feasibility, in terms of computation time, mesh requirements
and parallel scalability.

1 INTRODUCTION

In some cases of interest aimed to be studied by means of Computational Fluid Dy-
namics (CFD) certain moving objects within the simulation domain have to be considered
(e.g., wind turbines, turbo-machinery, etc.) In order to properly describe the effect that
these objects have on the fluid movement different approaches can be used. The objective
of this work is to study the efficiency, accuracy and limitations of two approaches used in
this field, the Immersed Boundary Method and the Sliding Mesh technique.

The Immersed Boundary Method (IBM) was first described by Peskin [1] and several
improvements since the first approach have been made [2–5]. The method consists in
adding a source term to the Navier-Stokes equations to describe a solid immersed in a
fluid. The interface of the solid is located with a Lagrangian set of points, and the fluid is
solved in a static Eulerian mesh, modifying the equations at the vicinity of the solid. This
method allows the versatility of describing a solid at various positions without needing
it to be conformal to the mesh. Moreover, it also allows to describe moving objects.
The Sliding Mesh method [6, 7] is one of the most common techniques of dynamically
connecting meshes, along with the chimera (overset) method [8] It is mainly used in cases
where the solid is rotating along a fixed axis, (e.g., wind turbines, turbo-machines, etc.).
This approach consists on employing two different meshes: the first one uses an static
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Eulerian framework, while the second mesh is rotating with the solid, in an Eulerian-
Lagrangian framework. These two meshes are none-overlapping and share a common
boundary, where the communication between them is performed.

Both methods can describe the movement of objects, so it would be of interest to
determine which one is more suitable for each application.

Immersed Boundary Methods have the limitation that as the Re number increases, the
meshing near the boundary must be refined. Not having a constant boundary requires a
finer mesh at all the possible positions of the solid. Another disadvantage regarding the
meshing is that prismatic layers cannot be used because the normal at the surface is also
dynamic. This two drawbacks increase the computational cost for turbulent cases. In
addition, as the mesh size increases, the localization of the solid body for each cell and
the modification of equations can be very time consuming.

On the other hand, Sliding Mesh Methods allow a refinement near the body, even
prismatic layers can be used, so more adequate and optimal meshes can be used. However,
this method does not allow the versatility of the IBM in the movement of the solid objects.
The performance of Sliding mesh technique is very dependent on how the communication
between both domains through the shared boundary is performed. Therefore, how the
information is transfered in the sliding-boundary is a key aspect both in the accuracy of
the method and its performance.

2 METHODOLOGY

The first case used to compare the methodologies is based in the standard case of flow
past a circular cylinder. This case is modified so that the cylinder is rotating around an
eccentric axis, placed at the cylinders boundary, as shown in Figure 1.

Uin out

ω

L0
L

H

W

Sliding Mesh approach

ω

ω

IBM approach

Figure 1: Geometry and approach of the case

The Reynolds number of the case is Re = ρUinD/µ, where Uin is the inlet velocity and
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D is the cylinder diameter. The rotating velocity of the cylinder is set to ω = Uin/D
For the Immersed Boundary Method, an STL surface defines a cylinder, and a discrete

forcing approach is used [2]. The discrete forcing approach consists in modifying the
discretized Navier-Stokes equations adding a forcing term that imposes the velocity of
the cell at the vicinity of the solid. A cut cell approach [9] is used in cases where more
accuracy is required. The cut cell approach consists on modifying the Poisson equation
coefficients accounting for the shape of the cell when intersected with the solid.

The mesh is refined as the Re number of the case increases, this refinement is performed
specially in the region where the solid moves, and the results of the case are compared to
the Sliding Mesh case results.

For the Sliding mesh approach, two different meshes are used, a fixed mesh and a
moving one. In order to stitch the two independent meshes, an efficient method to locate
the edges and faces to be intersected is employed. The algorithm consists on an improved
version of the methodology developed in Muela et al. [10]. The new method employs
auxiliary Lagrangian particles that move move jointly with the rotary domain, allowing
tho optimize the projection-intersection step. The intersection is performed by means of
the Sutherland-Hodgman algorithm [11]. The new faces resulting from the projection-
intersection step are employed to reconstruct the topology of the mesh at each iteration.
This new topology at the sliding boundary is employed to properly modify the convective
and diffusive operators, as well as the Poisson equation.

3 PRELIMINARY RESULTS

Some simulations have already been performed, different time instants and a velocity
plot for a simulation of a rotating cylinder at low Re number using the IBM is shown in
Figure 2.

Figure 2: Different time instants an velocity plot at x = 10 m of the rotating cylinder case solved using
the immersed boundary method
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