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Summary. In order to reduce the inter-node communication cost, we propose a domain 

decomposition method based on the multi-phase-field (MPF) model. The MPF model for 

polycrystalline growth minimizes the interfacial energy and forms a convex shape for each 

crystal grain. In our method, each phase of the MPF model represents a computational sub-

domain of each MPI process. We apply the proposed partitioning method to a block-based 

AMR application for an interface capturing on multiple GPUs. The proposed method can 

successfully reduce communication costs than the SFC approach. 

 

 

1 INTRODUCTION 

In distributed computations of memory-bound applications, the inter-node communication 

time often represents a major performance bottleneck. To optimize the communication cost, we 

propose a domain decomposition method based on the multi-phase-field (MPF) model. The 

MPF model simulates the process of material solidification, during which, each crystal grain 

grows to minimize its interfacial energy, thus minimizing its surface area. We can regard the 

crystal grain as a sub-domain of the computational domain and utilize its structure for the 

domain decomposition. The communication costs (proportional to the surface areas of each 

sub-domain) are expected to be minimized. For performance evaluation, we apply the proposed 

method to a block-based AMR application for an interface capturing and compare the 
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partitioning performance with the SFC approach. 

 

2 DOMAIN DECOMPOSITION BASED ON MULTI-PHASE-FIELD MODEL 

The multi-phase-field (MPF) method is used to study the growth of microstructures in 

polycrystalline materials. For a system consisting of 𝑁 different phases (crystal grains), we define 

the phase-field variables 𝜙𝑖(𝒙, 𝑡) (𝑖 ∈ {1, 2, ⋯ , 𝑁}) representing the existence (𝜙𝑖 = 1) and 

absence (𝜙𝑖 = 0) of phase 𝑖 at position 𝒙 and time 𝑡. At any point of the computational domain, 

the phase field variables satisfy the following constraint: 

∑ 𝜙𝑖 = 1 .

𝑁

𝑖=1

(1) 

The MPF model naturally tries to minimize each phase’s surface and it is thus well-suited 

for a partitioning problem with these requirements. However, larger crystal grains grow fast 

and smaller crystal grains disappear to reduce the total energy of the system. Thus the MPF 

method cannot be directly applied to partitioning problems. Therefore, we introduce a 

correction term into the MPF equation in order to balance computational load (volume 

correction) which penalizes vanishing phases. The volume correction term has been originally 

proposed by Uehara [1] to balance the volume of each crystal grain in the MPF method. The 

time evolution equation of the phase-field variable 𝜙𝑖 is: 

𝜕𝜙𝑖

𝜕𝑡
= −

2

𝑛
∑ 𝜔𝑖𝑗 [∑(𝜔𝑖𝑘 − 𝜔𝑗𝑘) (𝜙𝑘 +

4𝛿2

𝜋2
𝛻2𝜙𝑘) + 𝑘(𝐶𝑖 − 𝐶𝑗)|𝛻𝜙𝑖|2 |𝛻𝜙𝑗|

2
𝑁

𝑘=1

]

𝑁

𝑗=1

, (2) 

where 𝑛 is the number of coexisting phases at arbitrary position, 𝛿 is the interface thickness, 

𝐶𝑖 is estimates of the computational cost of the i-th sub-domain, and 𝑘 is a parameter for the 

correction term. The phase interface is driven by the computation cost difference between 

neighbor phases. For each sub-domain, we estimate the computation cost as 

𝐶𝑖 =
𝑁𝑖

block

𝑁ave
block

, (3) 

where 𝑁𝑖
block is the number of blocks in i-th sub-domain and is normalized by the average 

number of blocks 𝑁ave
block. 

The time evolution of the MPF equation is an iterative process to reach a steady state 

solution of the system and is thus independent of the physical time of AMR applications. After 

initialization, the domain partitioning is computed by iterating on the following steps: 

1) Solve the MPF equation for one iteration step. 

2) Partition the computational domain based on the phases. 

3) Estimate the calculation cost for each sub-domain. 

If the load imbalance error is smaller than a certain threshold value or the iteration count reaches 

the set maximum number of iteration, we stop iterating. 
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3 PERFORMANCE STUDY 

We apply the MPF partitioning to a block-based AMR application of an interface capturing 

method. We compare the performance of the MPF method with the Morton curve. Our 

simulations are carried out on multiple GPUs of the TSUBAME3.0 supercomputer at Tokyo 

institute of technology. 

3.1 2D partitioning test 

We solve the two-dimensional single vortex problem using the conservative Allen-Cahn 

equation with the AMR method on 16 GPUs. In this simulation, each block has 16×16 cells, 

and the effective resolution is 2048×2048 cells. The MPF partitioning with k=800 is computed 

on a mesh with a maximum resolution equivalent to 128×128 MPF cells. The MPF iteration is 

stopped if the load imbalance error is 0.05 or less. 

Figure 1 shows the result of the domain decomposition. We observe that the complex refined 

mesh is divided into almost convexly shaped sub-domains. Figure 2 shows the load imbalance 

error and the boundary block ratio. The MPF method keeps the load imbalance error rather than 

0.05 over the entire simulation. The boundary block ratio Br using the MPF method is smaller 

than that using the Morton curve, it means the MPF method reduces the communication cost 

that the Morton curve. 

 

 
Figure 1: Dynamic domain decomposition based on the MPF model with 16 sub-domains for 

adaptively refined mesh in a 2D single vortex simulation. The mesh indicates the blocks. 

 

          
Figure 2: Time history of the load imbalance error (left) and the boundary block ratio (right). 
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3.2 Strong scalability 

We discuss the strong scalability of the 3D AMR application on multiple GPUs using the 

MPF method. In strong scaling measurement, we perform simulations for two different problem 

sizes using 16 - 256 GPUs. In the lower- and higher- resolution case, the finest resolutions are 

corresponding to 2048×2048×2048 cells and 4096×4096×4096 cells, respectively. 

Figure 3 shows the strong scaling result. For both lower- and higher-resolution runs, we 

observed that the MPF method works more efficiently than the Morton approach. In the result 

of the higher-resolution case on 128 GPUs, the performance of the MPF case has increased to 

1.16 times that of the Morton curve. 

The breakdowns of both the MPF and the Morton partitioning on 128 GPUs are shown in 

Figure 4. In both the MPF and the Morton partitioning, the computation time of each MPI 

process (each GPU) is almost the same, which means that both partitioning methods achieve 

good load balance. We confirmed that the MPF method reduces the halo communication time 

of each MPI process than that of the Morton curve. The communication time of each process is 

not uniform because the MPF model minimizes the total surface area corresponding to total 

communication volume but does not equalize the surface area of each sub-domain. 

 

  
Figure 3: Strong scaling results.        Figure 4: Breakdown in higher-resolution run on 128 GPUs. 

 

4 CONCLUSIONS 

We presented a domain decomposition method based on the MPF model. The additional 

term for balancing computation cost is introduced in the MPF equation, and the communication 

cost is implicitly optimized by minimizing the interface energy of the MPF model. We applied 

the proposed partitioning method to a block-based AMR application on multiple GPUs for an 

interface capturing method. We showed that the proposed method can successfully reduce 

communication costs than the SFC approach.  
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