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Summary. In this extended abstract, a Chebyshev spectral method with global approximation
is used to solve the problem of ocean sound propagation problem. The numerical experiment
is tested by using normal modes model of Munk ocean waveguide problem and the results are
compared with that of the finite difference method. It shows that the proposed method has the
advantages of fast convergence, high accuracy and low computational overhead.

1 INTRODUCTION

In the past decades, finite difference method (FDM) was widely used in developing the
normal mode method for the simulation of an underwater acoustic field [1-3]. However it still
has many limits. The FDM is inflexible when handling boundary value problems with
complex shapes and constructing a high-accuracy scheme. When using the FDM in the
underwater acoustics applications, situation several discreting grid points should be arranged
in each wavelength which size is in meter-scale typically, thus resulting in huge size of grid
points as well as a huge amount of computation and memory’s cost for those far-distance
ocean applications. The spectral method is another classical, high order and widely used
technique to solve partial differential equations. Among them, the Chebyshev spectral method
(CSM) has been widely used in meteorology, physics, and engineering fields [4-6]. The
greatest advantage of the CSM is that its error can converges exponentially.

In this extended abstract, we attempts to introduce the CSM to solve underwater sound
propagation problems.

2 NORMAL MODE MODEL OF UNDERWATER ACOUSTIC PROPAGATION

Consider a homogeneous Helmholtz equation for a 2D horizontally layered medium with

depth z and horizontal distance r:
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where p(r, Z) is the sound pressure, p(z) and c(z) are the density and sound velocity of the
seawater, respectively, and w is the angular frequency of the sound source. Using the
technique of separation of variables, we seek a solution of Eq.(1) in the form p(r, Z) = u(z)
v(r). Then the following modal equation formed:
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k? is an (unknown) constant. Eq. (2) is known as a model equation which forms an eigenvalue
r

problem. In combination with proper boundary conditions at the sea surface z = 0 and sea

1y (7)) =

1,2, ..., These normal modes are orthogonal to each other and can form a complete set of
standard orthogonal bases. The final sound pressure solution can thus be obtained:
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where z_ is the sound source depth, and H gl)(-) is the Hankel function of the first kind.

floor z = H, the model equation has a series of normal mode solutions (k2
rm

We use the transmission loss TL =— 20log;, (|p(r, Z)|/ |p0|) instead of the sound

pressure itself in practical applications, where p, is the reference sound pressure at 1 m from
the sound source.

3 SOLVING UNDERWATER SOUND PROPAGATION PROBLEM USING THE
CHEBYSHEYV SPECTRAL METHOD

In the Chebyshev spectral methods (CSM), we approximate the unknown functions using a
truncated series of Chebyshev polynomials T, (x). That is, we use the partial sum of a infinite

series uy (x) to approximate the smooth function u(x) defined on interval [-1, 1]:
u(x) & uy (1) = T_o uiTy (%) (3)
Where the values uy, are the unknowns, and u,(x) is the truncated series with N terms

remaining. The specific way to determine these unknowns characterizes the spectral method.
The Chebyshev polynomials T),(x) are also known as test functions, and they form a set of

orthogonal bases of a continuous function space. They are given by Tk(x) =

cos (k cos™! (x)), and the expansion coefficient of Eq.(3) can be expressed as

-~ 2 1 u(x)Tk(x) 2, k=0
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Egs.(4) and (3) are called (forward) Chebyshev transformation and inverse Chebyshev
transformation, respectively. These transformations are use to relate the function u(x) in the

physical space and the coefficients u, s in the spectral space. In the CSM, the integral and
derivatives can also be expressed as its corresponding part in the spectral space. We presents
the details in the full version of this extended abstract.

We then consider the finite truncation of the N term expansion of u(x) in Eq.(3), and turn

the PDE problem about the unknown function u(x) into a new algebraic problem with N + 1

unknowns {u,, k = 0,1,---, N}by applying Chebyshev forward transformation. According to

the ways of constructing N + 1 equations and dealing the boundary conditions, the CSM can
be further classified into Galerkin, Tau, collocation and pseudospectral methods. Here, both
Tau and collocation methods are considered. With the help of Egs. (3) and (4), a linear
algebra eigenvalue system (6) is finally formed and can be solved by any mathematical library
and solution tool, such as BLAS/LAPACK, MKL, etc.
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4 NUMERICAL TESTS AND RESULTS

Two cases configurations (see table 1) are used to evaluate the accuracy and performance
of our method by comparing the results of CSM and that of FDM. An ideal fluid waveguide
of shallow water environment is used for case A, and it has the analytical solution which can
be used for the accuracy comparisons. Case B is a deep sea environment with more complex
Munk sound volocity profile used.

Case A: Shallow water Case B: (Deep water)
the depth of seawater H 100 m 5000 m
the maximum of range rmax 3 km 100 km
the depth of sound source z 36 m 1000 m
the sound source frequency f 20 Hz 50 Hz
Boundary conditions p(z = ()) = p(z = H) =0 p(z = ()) = p(z = H) =0
the density of the water p(z) 1g/cm? lg/cm?
the sound velocity c 1500 m/s Munk profile (Fig. 1)

Table 1 : The configurations of two cases for numerical simulations

Figure 2 shows the transmission loss (TL) results of analytical solution, FDM and our
CSMs. The number of grid points M = 51 for the FDM, and the item number of truncation N =
10 for two CSM methods. Figure 3 shows the error curves of FDM and two CSM methods
compared to the analytical solution. It indicates that CSM method has the smaller error than
the FDM, and the CSM-Tau method has the highest accuracy among all these three methods.
From the error curves shown in figure 4, we can found that both CSMs have faster
convergence speed than the FDM, and among them CSM-Tau has the best convergence
performance. The transmission loss results of FDM and our CSMs for case B are shown in
figure 5. The number of grid points M = 1001 for the FDM, and the item number of truncation
N =200 for two CSM methods.

From the above results, we can infer that the CSM is an effective and high-accuracy
method for solving underwater acoustic propagation problems. In fact it is a global
approximation method compared to the widely used FDM, and it need much less discreted
grid points than the FDM to reach the same level of error tolerance, thus reducing the amount
of computations and storage dramatically.

5 CONCLUSIONS

In this extended abstract, the Chebyshev spectral method is applied to solve the normal
mode model of underwater acoustic propagation problem. The results of two CSMs and
traditional FDM are compared for the cases of shallow water and deep sea environments. It
shows that the CSM has the advantages of fast convergence, high accuracy, and low
computational overhead. Our next work will include extending the spectral method to other
underwater acoustic models and more realizable applications. Furthermore, how to speed the
spectral method in the popular high performance computing platform with many-core
architecture would be also worthwhile.
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Figure 1: Munk sound velocity profile used in

case B Figure 2: TL results of analytical solution, FDM
and our CSM for case A. (a) TLs at depth 36 m; (b)
(a) TLs in the whole domain.
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Figure 3: TL error comparison for FDM and two
CSM methods.
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Figure 4: The error curves for case A.
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Figure 5: TL results of analytical solution, FDM
| : . . . . . L L and our CSM for case B. (a) TLs at depth 1000m; (b)
o ' TLs in the whole domain.




