
ParCFD’2020
32nd International Conference on Parallel Computational Fluid Dynamics

May-11-13 2020, Nice FRANCE
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Abstract. Fluid flow simulations in high-performance computers are still costly. They
often involve the selection of many computational parameters and options. The set-up
of such parameters is usually a trial-and-error process even for experienced users. In this
paper, we show how to extend in-situ visualization techniques with in-transit data analysis
to provide information to help steer the simulations at runtime. Often, by only observing
a region of interest, an experienced analyst can infer that something is not going well,
deciding to stop it or change parameters. However, to do that, visual information should
be complemented with information regarding the evolution of quantities of interest and
changes of parameters. We use for the simulations the libMesh library, which provides
a platform for parallel, adaptive, multiphysics finite element computations. We discuss
the integration of libMesh with in-situ visualization and in-transit data analysis tools.
We present a parallel performance analysis showing that the overhead for both in-situ
visualization and in-transit data analysis is negligible. The data analysis tools register
the provenance of the simulation data for reproducibility, including the runtime changes.
We show that the integration of such tools enables monitoring the quantities of interest
at runtime, steer the simulation based on the solver convergence or other data and visual
information, and analyze the consequences of the steering in a real fluid flow simulation.
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1 INTRODUCTION

Complex high-fidelity fluid flow simulations in high performance computers are still
costly. They often involve the selection of many computational parameters and options.
The set-up of such parameters can be a cumbersome task, and there is no guarantee that
they will lead to a successful simulation. Usually, this is a trial-and-error process, even
for experienced users. Tracking at runtime some quantities of interest from output files
is the regular procedure and, whenever possible, computations are halted, using check-
point/restart procedures to resume with a new set of parameters or resubmitting the job
to the queue. The typical simulation workflow involves the following steps: (i) preprocess-
ing and mesh generation; (ii) time stepping, saving data on disk when required; and (iii)
post-processing, typically visualizing the data generated by the simulation and extracting
relevant information on the quantities of interest. For large-scale problems, this workflow
involves saving a considerable amount of raw data in persistent storage. In-situ visualiza-
tion techniques circumvent the storage bottleneck, removing the necessity of transferring
data to persistent storage before visualization [3]. In this paper, we show how to extend
in-situ visualization techniques with in-transit data analysis to provide information to
help steer the simulations at runtime. Often, by only observing a region of interest, an
experienced analyst can infer that something is not going well in the simulation, deciding
to stop it or change parameters. Preferably, to optimize resource use, these actions should
be at runtime. However, to do that, visual information should be complemented with in-
formation regarding the evolution of quantities of interest, residual norms, the number of
linear and nonlinear iterations, often within a specific time window, not just the current
values. To obtain this complementary information, often it is necessary to write specific
code to identify the files related to the time window of interest, opening and parsing them
to obtain specific values and tracking their evolution.

2 CASE STUDY

Of particular interest here are turbidity currents, underflows responsible for sediment
deposits that generate that host possible hydrocarbon reservoirs. The mathematical
model for turbidity currents involves solving coupled high Reynolds number incompress-
ible fluid flow and transport. We use for the simulations the libMesh library [1], which pro-
vides a platform for parallel, adaptive, multiphysics finite element computations. libMesh
supports adaptive mesh refinement and coarsening (AMR/C) on general unstructured
meshes with a variety of error estimators.

To allow for runtime steering, the first step is modeling the simulation as a workflow
and identifying analysis and adaptation points [4]. Then, we add calls to in-situ visu-
alization (ParaView Catalyst) and in-transit data analysis tools (DfAnalyzer [2] and
DfAdapter [4]) in the simulation. DfAnalyzer registers the workflow’s provenance data
and DfAdapter [4] registers the provenance data of the adaptations performed by the user.
In this case study, the user adapts input parameters for the numerical solvers, specified in
a setup configuration file. The simulation checks, at every time step, if any modification
has been made to this file. If so, redefines the parameters in case of modification. Then,

2
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Figure 1: libMesh with In–Situ Visualization and In-Transit Data Analysis.

while the simulation runs, the provenance data captured by these two tools are stored in
a provenance database where other data, like quantities of interest and references to raw
data files, are also stored in an integrated way so that users can perform data analysis
at runtime. Figure 1 shows the integration of the libMesh-based simulation with in-situ
visualization and in-transit data analysis tools.

Performance analysis for a real case of turbidity currents simulations shows that the
overhead for both in-situ visualization and in-transit data analysis is negligible. Our tools
enable monitoring the sediment appearance at runtime and steer the simulation based
on the solver convergence and visual information on the sediment deposits. When users
steer the simulation, our tools enable further data analysis on how a particular action
(e.g., a fine-tune of a simulation parameter), influenced the simulation. Thus enhancing
the analytical power of turbidity currents simulations, as shown in Figure 2.

3 CONCLUSIONS

In this paper, we presented a solution that integrates CFD simulation code with in-situ
visualization and in-transit data analysis tools to allow for runtime steering of parallel
CFD simulations. We discussed how the simulation, implemented on top of libMesh, is
integrated with Para View Catalyst, for in-situ visualization, and with DfAnalyzer and
DfAdapter, for in-transit data analysis. These tools work as visualization libraries in the
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Figure 2: Runtime steering of the maximum tolerance for the inexact Newton method reduced the
execution time by 10 days (37%), with overhead < 1% and allowed job to finish successfully. The red
lines show how the mesh was adapted based on fine tunings. Job executed on 480 cores.

sense that strategic calls are inserted within the simulation code. Together, DfAnalyzer
and DfAdapter capture quantities of interest, data extracted from raw files, and prove-
nance of the runtime adaptations performed by a user while steering the simulation. These
captured data are related and stored in a provenance database available for runtime data
analysis. Using a real case study of a turbidity current simulation, we can verify that our
solution enabled the correlation of which parameters contributed to significant reductions
of simulation time. Users can then steer again based on the analysis of the impact of
each previous action. Without our tools, the runtime steering could be error-prone and
compromise the reliability of the results. We also observed that the added overhead for
provenance and steering accounted for less than 1% of total simulation time.
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