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Abstract. Supercomputing hardware is becoming increasingly diversified. Multi-physics
Computational Fluid Dynamics (CFD) codes must adapt to these new heterogeneous
machines if large simulations are to be performed efficiently. We propose a flexible
and lightweight graph-like data structure capable of decoupling different needs of the
code, such as cache blocking and linear system solution. Furthermore this data structure
can also improve parallel performances reducing communication time through multi-layer
ghosts.

1 INTRODUCTION

Looking at the evolution of the Top500 [1], one can see that the heterogeneity of the
architectures has increased dramatically. These machines have gone from having only
mono-cores CPUs in the early 2000s to a completely diverse combinations of multi-core
CPUs, MICs and GPUs in more recent years. The computational power has also grown
and we are now on the verge of the so-called exascale era. Furthermore, the number
of applications for these machines has increased exponentially, consequently they have
become more generalist and it is harder to have codes that can fully take advantage of all
these configurations. In an environment with such dissimilar architectures, multi-physics
CFD codes need to have data structures that can adapt easily to any of these possible
hardware in order to exploit them fully.
Here, we propose a flexible graph-like data structure whose objective is to make CFD codes
more versatile, decoupling their different kernels and adapting them to the hardware on
which they are executed.

2 MOTIVATION

Low-Mach number incompressible CFD codes usually use iterative linear solvers to
find a solution to the Poisson’s equation. These algorithms have typically an extremely
low arithmetic intensity, consequently such codes find their performances often limited
by memory accesses rather than computational power. The hardware memory hierarchy
needs then to be exploited efficiently in order to obtain reasonable performances [2].
Organising the data in blocks that could fit the cache brings then non-negligible improve-
ments to the code return time, consequently most CFD codes should have data structures
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that exploit cache-blocking. Unfortunately, the memory structure of GPUs, for example,
is different from that of ordinary CPUs and cache blocking is no longer useful and could
even be detrimental. The above mentioned data structure must then be versatile enough
to adapt to this two different scenarios, possibly with optimal performances in both cases.
The code used in this work is the parallel LES solver YALES2. Its entire data structure is
based on a double domain decomposition (DDD): first the grid is divided in sub-domains,
one for each process, then each sub-domain is split again in groups of element whose size
is sufficiently small for the data to fit into cache memory [3].
To solve the momentum equation, YALES2 uses a prediction-correction method for the
velocity, which implies the solution of a Poisson’s equation for the pressure. A Deflated
Preconditioned Conjugate Gradient (DPCG) algorithm is used to solve the resulting linear
system [4]. The DPGC is a multi-grid method: the Poisson’s equation is solved first on
an auxiliary coarser grid and then this solution is used to precondition the system on the
main grid. Usually convergence is found with only a few steps on the fine grid, however
the number of iterations on the coarser one can become extremely large. Performances
are consequently driven by the solution of the deflation system.
In YALES2, the deflation grid is also based on the DDD: as shown in Figure 1, each node
of the coarse grid corresponds to a group of elements. The RHS and operators on the
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Figure 1: Example of DDD with groups limited by grey areas (left) and corresponding deflation
grid/graph (right)

auxiliary grid are computed from those on the main one to build an equivalent linear sys-
tem: for each data, the values on the nodes of each group on the fine grid are interpolated
to give the value for that group on the coarse grid, and then, once the solution on the
deflation grid is found, the value on each group is projected back on all its nodes on the
fine grid.
In order for the entire data needed for the resolution of the system to fit in a L2 cache
of 512kB, a group should be made of a few hundred elements. However, our tests have
shown that on realistic test cases, the best performances of the linear solver are obtained
for much larger group sizes, typically between 5000 and 7500 elements: the resolution of
the linear system on a coarser grid converges faster, but a further increase in the groups
size is detrimental to the preconditioning of the main linear system.
The code has then two incompatible performance constraints: the cache blocking asks for
rather small groups, while the Poisson’s solver needs coarser meshes. It is important to
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underline that a typical deflation mesh consists of only a few hundred nodes per process,
hence its computational cost is very low. However, as shown in Figure 2, even if this
particular algorithm requires only one point-to-point (P2P) and one collective commu-
nication per iteration, with a large number of processes the scalability of this algorithm
can become far from ideal due to the fact that communication cost becomes preponder-
ant. The introduction of a new data structure in the code could allow to decouple the
two constraints and to have a deflation grid independent of the DDD, which will be only
based on the cache size, making it more versatile. In Section 3 we show that this new
data structure also allows to enhance parallel performances.

3 GRAPH DATA STRUCTURE

A graph-like data structure seems particularly adapted for the above mentioned needs:
the analogy between a grid and a graph is trivial (Figure 1) and only the connectivity
between neighbour vertices is needed in the DPCG algorithm. Furthermore, there is an
extensive quantity of already available and optimized algorithms to manipulate graphs.
Parallel data exchanges on the boundaries among processes are dealt with a classical
overlapping ghost structure.
In Section 2 we have seen that the typical size of a deflation grid is of a few hundred
elements per process and that communication can quickly become preponderant. This
data structure has been thought in such a way that multiple layers (nl) of ghosts vertices
can be added on each process, extending the available stencils and allowing the algorithm
to work with only a P2P communication each nl iterations, as shown in Figure 2.
It is important to remember that this algorithm works on a very small grid. The size of the
data that is typically exchanged between processes consists of only few hundred Bytes per
ghost layer. Consequently, the communication cost is mainly due to network latency and
load imbalance. Although computational cost and message size increase proportionally to
the number of layers, their effect remains sufficiently small to be negligible in comparison
to the aforementioned factors. In Figure 2 we can see a trace obtained by TAU [5] over
few iterations of the algorithm with 1 and 4 ghost layers on 14 processes. While the
cost of collective communications is mainly due to the load imbalance, we notice that the
P2P communication cost is paramount. Even though the single data exchange is slightly
costlier when using multiple layers, the gain in the other iterations shows the efficiency of
this methodology.

4 CONCLUSION AND PERSPECTIVES

We have argued that more flexible data structures are needed in multi-physics CFD
codes if they are to be adapted to the new heterogeneous supercomputing architectures
and we have shown that a simple graph-like data structure could be sufficient for all
those algorithms in which only the connectivity between nodes is needed. Although the
developments are still in a validation phase, the measures shown in Figure 2 are very
promising. We aim to demonstrate the efficiency of this new data structure on large
industrial cases. Architecture aware partitioning is fundamental for good parallel perfor-
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Figure 2: Trace of a few deflation iterations: single ghost layer nl = 1 (left) vs multiple ghost layers
nl = 4 (right). One iteration is contained between two MPI ALLREDUCE calls.

mances, consequently we are also going to use a hardware-aware partitioner for the grid in
order to minimize the number of neighbours, hence the quantity of exchanged messages,
to be able to fully exploit shared memory systems and have better load-balancing across
processes. We have repeatedly underlined the fact that the mesh size per process is very
small. This would allow each process to treat reasonably larger graphs. This pushes us to
create a gather-scatter system for the graphs, in order to have a larger graph per process
and in the meantime reduce the number of processes participating to the computation.
This will allow better scalability when the cost of collective communication could become
important.
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