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Abstract. The growing variety of computing architectures and the hybridization of
high-performance computing systems encourage the research for portable implementa-
tions of numerical methods in simulation codes. However, the pursuit of efficient and
portable implementations is a rather complex problem. The present work is devoted
to the development of portable parallel algorithms, primarily for scale-resolving time-
accurate simulations of incompressible flows with turbulent heat and mass transfer. The
heterogeneous computing capability allows for engaging both processors and accelerators
efficiently. In addition to computing on accelerators, special attention is paid at efficiency
on multiprocessor nodes with significant non-uniform memory access factor. In this work,
we study in detail the parallel efficiency and performance for different execution modes
on up to ten thousand cores of MareNostrum 4 supercomputer.

1 INTRODUCTION

Current HPC systems consist of multiple hybrid computing nodes interconnected via
a communication infrastructure. Hybrid nodes may be composed of several hardware
devices of different architectures, such as central processing unit (CPU), many integrated
core (MIC) or graphics processing unit (GPU), among others. The computing operations
that form the algorithms must be compatible with distributed- and shared-memory multi-
ple instruction, multiple data (i.e., DM-MIMD and SM-MIMD respectively) parallelism,
and more importantly, with stream processing (SP), which is a more restrictive parallel
paradigm. Therefore, a complex multilevel parallel implementation model is required to
combine the different parallel paradigms and their corresponding computing frameworks.

Nowadays, the use of the GPU architecture for computational fluid dynamics (CFD)
simulations has become rather mature, and there are many successful examples in the
literature [1, 2]. One of the most significant examples of large-scale, GPU-based simulation
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can be found in [3], reporting an extraordinary sustained performance of 13.7PF. These
popular GPU-only implementations may derive from the assumption that GPU is powerful
enough to neglect the CPU’s capabilities. However, both architectures are still advancing,
and their competition is far from over. Therefore, if either CPUs or GPUs can be used
efficiently for CFD simulations, why not to use them both concurrently? Considering a
1:3 ratio between CPU’s and GPU’s bandwidth, the heterogeneous parallel model can
increase the sustained performance in 30% as proved in [4]. Nevertheless, heterogeneous
implementations are still relatively uncommon. For instance, see [5, 6].

In our previous work [7], we proposed an algebra-based framework as a portable so-
lution for direct numerical and large eddy simulation (DNS and LES respectively) of
incompressible turbulent flows on unstructured meshes. However, the multilevel parallel
implementation in [7] became ineffective on multiprocessor supercomputers with signifi-
cant non-uniform memory access factor (NUMA). In the present work, we have solved this
issue and significantly improved the efficiency on multiprocessor nodes and, consequently,
increased the gain of heterogeneous computing. Therefore, we present an in-depth perfor-
mance study on up to 200 multiprocessor nodes of the MareNostrum 4 supercomputer.

2 THE ALGEBRA-BASED APPROACH FOR CFD SIMULATIONS

Consider a simulation code composed of a minimal set of basic operations, preferably
standard linear algebra operations, which are simple and compatible with the restrictive
stream processing paradigm. Following an algebraic approach, we replace the traditional
stencil data structures and sweeps on CFD codes by algebraic data structures and kernels.
The discrete operators and mesh functions are stored as sparse matrices and vectors,
respectively. Thus, the algorithm for DNS and LES of incompressible turbulent flows relies
on a reduced set of three algebraic kernels: the sparse matrix-vector product (SpMV), the
linear combination of vectors (axpy) and the dot product (dot). Specifically, the SpMV
often receives much attention because it is prevalent in many computing applications.
Indeed, this key operation is a bottleneck in scientific computing because it is a memory-
bounded operation with a very low arithmetic intensity, and it leads to indirect memory
accesses with unavoidable cache misses. Therefore many authors strive to adapt sparse
matrix storage formats for different architectures and matrix properties. For instance,
see [8, 9].

3 PERFORMANCE OF THE SPMV ON CPU SUPERCOMPUTERS

In modern supercomputers, the CPU consist of a pool of cores grouped into NUMA
nodes (i.e., different CPU sockets, even clusters of cores inside each socket). Modern CPU
architectures integrate dozens of cores and allow for simultaneous multithreading (SMT).
Therefore, a fine-tuned SM-MIMD parallelisation is required to engage all the CPU cores.
In this work, the performance of our in-house SpMV kernel on multiprocessor nodes is
improved by a NUMA-aware OpenMP implementation. It sets thread affinity to properly
bind threads to NUMA nodes to ensure compact data locality.

The benefits of the NUMA-aware implementation have been studied on MareNostrum
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4 supercomputer at Barcelona Supercomputing Center (BSC). Its nodes are composed of
two Intel Xeon Platinum 8160 CPUs (24 cores, 2.1 GHz, 6 DDR4-2666 memory channels,
128 GB/s memory bandwidth, 33 MB L3 cache), and are interconnected through a high-
speed interconnection network, the Intel Omni-Path (OPA).
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Figure 1: Comparison of different parallel modes of the SpMV kernel on a dual-processor node with two
Intel Xeon Platinum 8160 CPUs.

The single-node results for different parallel modes in Figure 1 reveal the effects of
thread binding and NUMA initialisation. The sparse matrix used in this study arise from
the symmetry-preserving discretisation [10] of the Laplacian operator on an unstructured
hex-dominant mesh of 17M cells. The MPI mode, which leads to the most compact data
placement, is slightly overcome by the OpenMP mode with thread binding to sockets and
thread data initialisation (denoted in the plot as init=thread, bind=socket) due
to the absence of communications in the latter mode. In both cases, the performance
begins to stagnate from 24 cores and reaches the maximum performance at 40 cores. The
OpenMP mode with master initialisation and no affinity results in a deficient performance
comparable to using a single CPU socket.

Finally, the multi-node results on up to ten thousand cores of MareNostrum 4 super-
computer are going to be presented and discussed at the conference.
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