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Abstract. This document describes parallel operations involving changes to the mesh
structure, parallel identification, and in-situ extraction used in EDF’s code saturne CFD
tool, to prepare it for exascale.

1 INTRODUCTION

EDF’s code saturne software is a general-purpose Navier-Stokes solver, which has been
under development since 1997 [1]. Based mainly on a co-located finite volume method
using unstructured polyhedral meshes, it now also includes a large set of Compatible
Discrete Operator (CDO) [5] features. Its parallelization paradigm is based on classical
spatial partitioning using MPI for communication and a ghost-cell approach to aggregate
communication stages. A second-level of parallelism using OpenMP is also available.

The code saturne tool has been available under the General Public Licence V2 since
2007 [2]. It has also been designated one of the 2 CFD benchmark codes in the European-
wide PRACE initiative [3] and run on several of the available tier-0 petascale computing
architectures provided in the project.

As an industrial code also targeting extremely large configurations such as Large Eddy
Simulations of full nuclear reactors, it is essential for the toolchain to be straightforward.
This implies that operations such as domain partitioning, generating output, or restarting
a calculation on a different number of processes should be as transparent to the user
as possible. When these operations can be done “in situ”, we get the added benefit
of avoiding expensive IO, and removing complex dependencies between compute stages
having different resource requirements.
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2 BASE TOOLCHAIN AND ARCHITECTURE

To enable running on a wide range of machines, the code saturne toolchain naturally
separates tools dedicated to lightweight and especially interactive operations, such as the
GUI, and the main solver itself, which should be able to run at a large scale in the batch
environments of supercomputers.

2.1 USE OF THIRD-PARTY LIBRARIES

Strong dependencies on third-party libraries inside the main solver have been avoided
as much as possible to ensure portability. Third-party libraries can extend features, but
are all optional, so porting to newer architectures is much easier, and can be done in
multiple steps (starting with a “bare bones” install, then adding bells and whistles).

Optional libraries include PT-SCOTCH and ParMETIS (in addition to native Space-
Filling Curve partitioners), the PETSc library (in addition to native linear algebra fea-
tures), the ParaView/Catalyst library for in-situ postprocessing, MED and CGNS to
support the associated mesh formats, and fluid property libraries.

3 PARALLEL IO AND PARTITIONING

A key tenet of code saturne solver developement is that mesh-based data is distributed
at all stages, and no single MPI process should ever need to contain a single global
array. This implies that data must be read in parallel, or at worse read by chunks
and distributed immediately i.e. “funnelled”. For this, direct MPI-IO is mainly used.
Partitioning algorithms must of course also be distributed.

Distribution of data at such an early stage results in an initial distributon which may
be far from optimal, and some mesh entities and their adjacent entities (such as faces and
vertices) may not even be read on the same core. To handle this, we use redistribution
operators for different adjacency configurations based on global ids. Since these operators
use all to all algorithms internally, which been encapsulized in a high-level API, allowing
instrumentation and more importantly choice of different algorithms, to better adapt to
very high MPI rank counts.

4 PARALLEL MESH MODIFICATION

The support of polyhedral elements in code saturne has been both very useful and
constraining, as many third-party tools or libraries do not support those elements well,
if at all. This support is the basis of a distributed algorithm for non-conforming mesh
joining, described in older publications [4], and has allowed to work around many serial
meshing tool’s limitations by assembling piecewise meshes on-the-fly.

In recent years, features allowing to reduce the time for mesh generation have been
added, all of which are implemented in parallel:

- inserting boundaries on selected interior face sets, possibly separating the mesh into
multiple zones; vertices are duplicated where necessary, and complex (non-manifold)
surfaces can be handled;
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- extruding selected boundary faces along chosen directions; the number and thickness
of the extrusion layers may be defined to vary locally;

- inserting viscous layers combining the above feature with a mesh deformation algo-
rithm. This can be done in the setup stage, or at the end of a computation, where
flow field data can be used to adapt the thickness for a subsequent run;

- adding a local mesh refinement using predefined templates for regular elements, and
a generic one for polyhedra.

Work has also started on making the mesh refinement locally reversible, to allow for
full mesh adaptation features.

5 PARALLEL MESH LOCATION

Mapping from one mesh to another is increasingly used, and is involved whether restart-
ing from a different mesh, mapping internally from one boundary to another, coupling
with another code, or in algorithms such as mesh joining.

Multiple algorithms are used, with different performance properties and APIs. The
internal APIs used are quite high-level, and lower level optimizations improving the scal-
ability should have a minimal maintenance impact. This will be detailed in another
publication.

6 PARALLEL MESH AND DATA EXTRACTION

With computations involving meshes with hundred of billions of cells, the volume of
data produced can be huge, especially in the context of transient flows.

In addition to the performance impact of file IO, in many cases, “post-hoc” visual-
ization or processing tools may be unable to handle huge data sets, whether due to tool
scalability, file format limitations, or postprocessing resources availability. And for all this,
the amount of data that is finally used is often much smaller than the data produced.

From the onset, code saturne has allowed users to define additional operations on the
data, which is often used to compute balances, statistics, and extract values in specific
regions of interest. Extracting a subset instead of a full computational mesh for post-
processing has been almost systematically used on our larger computations so as to limit
postprocessing to “manageable” quantities.

In recent years, we have made an increasing use of ParaView/Catalyst [6], so as to of-
fer a more complete extraction capability, including most of the visualization capabilites
available to smaller cases, albeit in an in-situ manner. Though this may require some
additional preparation, it allows handling complex postprocessing operations and gener-
ating advanced visualizations with a very small I/O footprint. As the fields of in-situ and
in-transit processing is evolving fast, more options will probably be added in the future.
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Figure 1: left to right: in-situ defined extracts, refinement templates, viscous layer insertion

7 CONCLUSIONS

Although code saturne may be considered as a “legacy” code, enforcing some pre-
cautions over its developement and progressively migrating an ever-increasing portion of
its toolchain to built-in or library-based in-situ operations using distributed and mostly
scalable algorithms, it has maintained the ability to run smoothly on tier-1 and tier-0
machines.
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