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Combustion simulations require resolution of the thin reaction layer within the flame where 

high magnitudes of temperature and species gradients exist. Typically, for simplified 

chemistry, 10 to 20 mesh points are kept within the flame thickness in order to resolve key 

thermo-chemical processes within the flame. The mesh resolution requirements become 

increasingly stringent with increasing complexity of the chemical mechanism [1]. These 

requirements are more challenging in turbulent reacting flows because the smallest length 

scales of turbulence need to be resolved in addition to the flame thickness.  The need for 

spatial resolution is exacerbated further in cases of flame-wall interaction (FWI) and localised 

ignition, especially at elevated pressure because the flame thickness decreases with increasing 

pressure [2]. In order to carry out a detailed simulation of a reacting flow within a reasonable 

computational cost, a dynamic adaptive mesh refinement (AMR) library has been recently 

developed and applied to a CFD solver for reacting flows known as the HAMISH code. The 

AMR technology enables fine cells to be used only where required, e.g. near the wall and 

within the flame.  

The numerical framework of HAMISH relies on a finite-volume approach for spatial 

discretisation together with a Runge-Kutta algorithm for time stepping. An unstructured 

Cartesian mesh allows for adaptive local refinement and de-refinement operations based on 
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requirements prescribed by the numerical solution. The data structure is built by representing 

the unstructured mesh as a bitree/quadtree/octree (in 1-D, 2-D and 3-D respectively).  

Spanning the tree with the help of the Morton-ordered space filling curve then allows efficient 

cell addressing and parallel domain decomposition. Within HAMISH, a Morton code is 

defined with 18 possible levels together with a level descriptor, as shown in Figure 1. The 

encoding of each level is represented as a 3-bit binary number or octet, and the level 

descriptor is defined as a 6-bit binary number. An 8-byte integer number is used to contain a 

Morton code, for example, the Morton code in Figure 1 is represented as the decimal integer 

number 108086391057149416.  

 

Figure 1: Example of a binary Morton code defined in the HAMISH code 

By using an array of Morton codes, an AMR mesh can be generated. A sketch of the 

Morton encoding of a 2-D three-level mesh is presented in Figure 2, from which we can see 

that the highest level is used to determine the size of a cell, and encoding defines the spatial 

coordinates of a cell, i.e. the i,j,k integer coordinate of a cell, which can be efficiently 

obtained using binary operations.  

 

Figure 2: Sketch of a 2-D AMR mesh and quadtree structure generated using an array of Morton codes. 

 

The Morton code array can be easily interpreted as a bitree/quadtree/octree data structure, 

as shown in Figure 2, and the cells in the tree can be connected by a searching procedure 
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based on following the path defined by the octets within each Morton code. With information 

about the cells’ connectivity, the finite-volume stencil can be defined, the numerical fluxes 

can be calculated, and the equations discretised on the mesh can be solved. The Morton codes 

are stored in memory according to their binary sequence, which traces out a Z-shape as 

indicated in Figure 2. The mesh refinement/derefinement procedure is handled based on an 

appropriate length scale dictated by the physical nature of the flow problem. The mesh 

refinement is enacted by splitting a cubic parent cell of side h into eight cubic child cells of 

side    .  By contrast, derefinement is carried out when 8 child cells of side h/2 combine to 

form a parent cell with side h. The refinement/derefinement is first conducted on the Morton 

code by adjusting the level of the Morton code by 1, with new cell addresses provided in the 

octet at the highest level.  

The AMR library has been applied to solve the Navier-Stokes equations with species 

transport equation and a detailed chemical reaction mechanism. The HAMISH code is tested 

for several benchmark cases, including, (a) Simulation of 1-D planar laminar premixed flames 

to demonstrate the capability of AMR in capturing the sharp gradients within the flame 

(shown in Figure 3); (b) 1-D head-on quenching of laminar premixed flames to demonstrate 

the capability of HAMISH in dealing with reacting flows in the presence of a wall; (c) 2-D 

Rayleigh–Taylor instability problem to show the ability of AMR in tracking an interface; (d) 

2-D laminar channel flow to show the ability to refine the mesh in the boundary layer next to 

the wall (shown in Figure 4); (e) 3-D non-reacting Taylor-Green vortex which demonstrates 

the capability to simulate accurately the vortical motion typical of turbulent flows (shown in 

Figure 5); (f) 3-D premixed turbulent flame propagation under isotropic homogeneous 

decaying turbulence to show that this code can be used for Direct Numerical Simulations of 

turbulent reacting flows in canonical configurations. 

a b c  

Figure 3: The density (a), pressure (b) and mass fraction of products (c) of the 1-D planar flame.  

 



4

 

J. Fang, U. Ahmed, J. Grasset, C. Moulinec, N. Chakraborty and D. R. Emerson and R.S.Cant 

 

(a)  (b)

0.0

0.5

1.0

1.5

2.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

u
y

 HAMISH Solver

 FDM Solver

  

Figure 4: The mesh and velocity profile of the 2-D laminar channel flow 

 
Figure 5: Instantaneous coherent structures in the 3-D Taylor-Green vortex case 
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