
ParCFD’2020 

32nd International Conference on Parallel Computational Fluid Dynamics 

May 11-13 2020, Nice FRANCE 

  

 

 

GPU-BASED ARTIFICIAL NEURAL NETWORKS FOR CFD 

OLIVER HENNIGH*, SANJAY CHOUDHRY* AND STAN POSEY* 

*NVIDIA Corporation   

Santa Clara, CA, USA 95050 

e-mail: sposey@nvidia.com, web page: https://www.nvidia.com 

Key words: GPU, AI, Computational fluid dynamics, Physics-informed neural network. 

Summary. Current trends in computational fluid dynamics (CFD) include the use of graphics 

processing units (GPUs) as parallel co-processors to CPUs in order to accelerate numerical 

operations and algorithms common to CFD solvers. GPUs are also applied in the novel CFD 

methods in artificial intelligence (AI) capable of encoding the Navier-Stokes equations into 

physics-informed neural networks (PINNs) while being agnostic to geometry, or initial and 

boundary conditions. Examples will include NVIDIA use of such techniques applied in 

electronics thermal design of heat sinks. 

 

 

1 INTRODUCTION 

Efficient use of computational resources and simulation turn-around times are critically 

important factors behind engineering decisions to expand CFD technology to support more 

product design. Recent developments in GPU-based high performance computing (HPC) and 

AI have improved computational speeds by orders of magnitude for a broad range of CFD 

simulations relevant to engineering practice. This topic will examine an inverse method to the 

solution of CFD through implementation of artificial neural networks.  

The CFD solution starts with imaging data and discovers the underlying physics and/or 

properties of a fluid flow configuration directly from the partial differential equations (PDEs) 

that describe the flow behavior. This inverse approach can used for predicting flow velocities 

and pressures for an entire transient range, without the need for direct measurement of such 

quantities and promises advances for a wide range of fluid flow applications. 

2   PHYSICS-INFORMED NEURAL NETWORKS 

AI research¹ has given rise to applications of physics-informed neural networks (PINNs) 

that leverage the underlying laws of physics, often described in the form of PDEs, to solve 

forward, inverse, and model discovery problems. Advantages over traditional methods of 

solving PDEs relevant to CFD include (i) usability: not requiring arduous meshing, (ii) speed: 

ability to solve multiple geometries simultaneously, (iii) scalability: embarrassingly parallel 

across clusters of GPUs, and (iv) expertise: ability to leverage training experience. 

NVIDIA has applied PINNs for problems requiring either an inverse approach or a forward 

solution similar to those available from conventional numerical CFD solvers, for use cases 

such as the design and optimization of heat sinks for the company’s DGX systems powered 
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by the V100 GPU. These networks require no data, can work with single or parameterized 

geometries and solve single or multiphysics problems. At the backend, GPUs are used for 

computation of the network training and inference procedures with the cuDNN accelerated 

TensorFlow deep learning framework.  

 

 
Figure 1: Validation of PINN Predicted results vs. True by an open source CFD solver, for a lid driven cavity, 

and PINN Predicted thermal results of a typical NVIDIA GPU heat sink design candidate. 

The concept behind a neural network solver is to approximate the solution to a given PDE and 

boundary conditions. This is accomplished by formulating a loss for how well a neural 

network solution satisfies these conditions. For validation of this idea, a lid driven cavity 

example was investigated as shown in Figure 1. Results show a forward solution of the PINN 

approach for the lid driven cavity compares very well with a conventional CFD solver, with 

errors in the u and v components of velocity being 0.2% and 0.4% respectively. 

3 MULTIPHYSICS HEAT SINK 

The PINN inverse method described was used to improve the design and effectiveness of 

heat sink candidates where thousands of configurations could be analyzed within hours as 

opposed to weeks using conventional CFD simulations. Results are provided in Figure 2. that 

apply the neural networks solver to heat sink configurations for a multiphysics simulation of 

both fluid and heat equations with one-way coupling. The left configuration is a simple design 

with only 3 fins used to benchmark and compare solvers, and the left image shows results for 

a heat sink design candidate under consideration for next generation DGX servers.  

The key physical quantities of interest from the multiphysics simulations are pressure drop 

and peak temperature. Results for these quantities were calculated using the PINN solver as 

well as conventional CFD solvers that typically deploy conjugate heat transfer solutions to the 

multiphysics solution. Table 1. provides results that compare PINN solver, the OpenFOAM 

solver (www.openfoam.com/) using the pimpleFoam option, and a commercial CFD solver for 

the 3 fin heat sink, and Table 2. provides comparisons for the design candidate heat sink. For 

both configurations, the PINN solver shows good agreement and under predicts results in the 

~5% range for the 3 pin configuration, and in the ~10% range for the design configuration. 

http://www.openfoam.com/
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Figure 2: Heat sink configurations, 3 pin (left) and full design candidate (right) 

 

Physical Quantity Neural Network 

Solver 

OpenFOAM 

(pimpleFoam) 

Commercial 

CFD Solver 

Pressure Drop (Pa) 6.9 7.3 7.3 

Peak Temperature (C) 79.8 81.3 80.2 

Table 1 : Results of numerical consistency for 3 pin heat sink 

 

Physical Quantity Neural Network 

Solver 

OpenFOAM 

(pimpleFoam) 

Commercial 

CFD Solver 

Pressure Drop (Pa) 25.6   28.4 

Peak Temperature (C) 78.8   84.9 

Table 2 : Results of numerical consistency for design heat sink 

 

4 HPC CONSIDERATIONS 

The number of potential design evaluations for HPC-driven design optimization is most 

often restricted by the HPC workload that can fit within overall design cycle times. As an 

example, investigation of 50 dimensional variations for each of just two design parameters, 

edge fin height and center fin height, result in 2500 design evaluations. The required HPC 

resources and computational time using conventional CFD simulations is intractable, however 

the PINN approach offers the possibility to analyze a full spectrum of design candidates in a 

fraction of the time. 

Comparisons of HPC resource requirements between the PINN approach and conventional 

CFD solutions are shown in Table 3. The neural network requires 5 days of computational 

time for the training on 1 x V100 GPU for the entire design space. Once completed, a single 

inference run is only 3 sec for a single evaluation vs. 1 hour for the commercial CFD solver or  
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HPC Quantity Neural Network Solver Commercial CFD 

Solver 

Factor 

Total compute time for 2500 

design evaluations 

 

2 hrs*: 3s each on 1 x 

NVIDIA V100 GPU 
*Inference time only 

104 days: 1h each on 1 x 

Intel Gold 6128 (SKL) 12 

cores @ 3.4 GHz 

1200x 

Memory capacity (each eval) 0.216 GB 64 GB 296x 

Output file size (each eval) 0.5 GB 2 GB 4x 

Table 3 : HPC resource requirements of PINN solver and commercial CFD solver 

 

a factor of 1200x that represents 3 orders of magnitude. There are also dramatic reductions in 

memory capacity requirements by 296x, and a 4x reduction in output file size to help improve 

file handling and I/O times for post-processing procedures. 

5 CONCLUSIONS 

As CFD simulation demands increase and motivate the need for more transients, higher-

resolutions, and multiscale, multiphysics simulations, GPUs will become an essential HPC 

technology. The AI approach presented has demonstrated substantial benefits to dramatic 

reductions in CFD turn-around time and other HPC resource requirements that lead the way 

towards practical HPC-driven design methods. Based on current trends, GPU-based HPC 

combined with novel AI techniques will enable a level of applied CFD that can grow as a 

common practice to support engineering design and optimization procedures. 
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