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Abstract. We investigate the prediction of super-knock in internal combustion (IC)
engines by using machine learning (ML). The dataset generated from multi-dimensional
direct numerical simulations (DNS) of knock formation for a stoichiometric ethanol/air
mixture under a representative end-gas auto-ignition condition in IC engines is adopted
to train a Deep Neural Network and assess its predictive capability.

Highly boosted and downsized engine strategies have been widely investigated for ad-
vanced engines. The engines become more compact, and thus provide higher power den-
sity per volume, higher thermal efficiency, and lower CO2, NOx and soot emissions. De-
spite their promising advantages over the conventional IC engines, the elevated pressure
and temperature of the in-cylinder fuel/air mixture under high-load operating conditions
may induce a higher propensity of abnormal combustion phenomena such as pre-ignition,
knock, and even super-knock [1, 2, 3]. Such abnormal combustion phenomena also occur
in shock tubes, rapid compression machines, and gas turbine engines [3]. Super-knock is
characterized by extremely high-pressure spikes and excessive pressure oscillations that
may lead to mechanical damage [3]. The better understanding of the underlying mecha-
nism of the super-knock development and a reliable criterion to predict super-knock are
needed to prevent destructive operation of combustion devices [4, 5, 6].

First-principle direct numerical simulations (DNS) can fully resolve all temporal and
spatial scales and the complex interaction of thermochemistry and turbulence [1, 2]. Such
high fidelity simulations allow unraveling the process of detonation development encoun-
tered in advanced combustion devices under extreme high-load operating conditions as
illustrated in Fig. 1. With the aid of machine learning and high-fidelity DNS data, a
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Figure 1: Representative distribution of pressure for four different le of 1 mm, 2 mm,
5 mm, and 10 mm from left to right, with the same T ′ of 15 K. Cases with le of 1 mm,
2 mm, and 5 mm and 10 mm, feature no knock, mild knock, and super-knock, respectively.

Figure 2: Representative distribution of temperature with T ′ of 15 K for le of 5 mm.
T ′ and le denote the root mean square temperature fluctuation, and the most energetic
length scale of temperature, respectively.

framework to predict the knock propensity for a given initial condition is being devel-
oped, which can serve as a reliable predictive tool for real-world industrial applications.

The dataset to apply machine learning was generated in previous parametric DNS stud-
ies [1, 2]. The possibility of super-knock events is predicted for given initial conditions as
those representatively shown in Fig. 2 and Fig. 3, and the temporal and spatial evolution
of the flow field. The initial conditions correspond to a temperature T0 of 1200 K, pressure
P0 of 35 atm, and equivalence ratio φ0 of 1.0. Under these initial conditions, the associ-
ated homogeneous ignition delay time, τ 0ig, and equilibrium pressure, Pe, of the ethanol/air
mixture are 75 µs, and 99 atm, respectively. Other relevant ideal one-dimensional det-
onation parameters are the von-Neumann pressure, PV N of 315 atm, Chapman–Jouguet
pressure, PCJ of 185 atm, and Chapman–Jouguet speed, VCJ of 1836 m/s. Further details
will be provided in the presentation.

Deep learning is a class of machine learning tools based on artificial neural networks
with representation learning. Deep learning has been successfully applied in various fields
including industrial automation[7], cloud computing [8], and medicine [9]. However, its
applications in computational fluid dynamics (CFD) workflows are sparse [10]. In the
current work we employ a deep learning technique to predict super-knock. A deep neural

2
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(a) le = 1 mm, T ′ = 15 K, no knock (b) le = 2 mm, T ′ = 15 K, mild knock

(c) le = 5 mm, T ′ = 15 K, super-knock (d) le = 5 mm, T ′ = 0.6 K, mild knock

Figure 3: Representative ξ distribution computed from the initial conditions for three
different le of 1 mm, 2 mm, 5 mm from left to right, with the same T ′ of 15 K.

network (VGG16) is trained to predict three cases including no-knock, mild-knock and
super-knock. The trained network is evaluated using manually labelled data. Such an
approach will be used for inference, i.e. with a given initial conditions shown in Fig. 2,
we are able to predict if there is a super-knock event or not. Such a capability will save
computational resources in the order of millions of core hours.

The prediction is based on the spatial distribution of ξ [4], which is defined as ξ = a/Ssp,
where Ssp is the speed of a spontaneous ignition front and defined by the spatial gradient
of the ignition delay time, Ssp = |∇τig|

−1, and a is the sound speed. The initial conditions
of seventy eight cases featuring different knock levels were processed, resulting in the
seventy eight distributions of ξ as shown in Fig. 3. The data were divided into training
and testing splits, 62 images were used for training and 16 were used for testing. All data
were classified into three classes - no knock, mild knock, and super-knock. In order to feed
unbiased data to the network, training and testing data had proportional representation
of data from all classes.

The trained VGG16 network was able to predict test data with very high accuracy, al-
most 100% in many cases. This deep learning technique also confirmed a strong correlation
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between the knock intensity and the level of root-mean-square temperature fluctuation,
T ′, and its characteristic length scale, le. In future we will be conducting more deeper
studies and we will pose more harder questions such as the identification of localized
super-knock regions and early prediction of super-knock.
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