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Abstract. A parallel high-order adaptive finite-volume algorithm is enhanced by data
assimilation to further improve our understanding of uncertainties in the predictions of
turbulent combusting flows, and thus increase the predictability of fluid and flame dynam-
ics. By assimilating data from high resolution simulations and physical experiments into
the present CFD model, the maximum likelihood ensemble filter is employed to correct
potential errors in the initial and boundary conditions, physical models, or parameters
used in the governing equations. This study applies the parallel data-assimilation CFD
algorithm to turbulent premixed flames in a 3D complex geometry and signifies the impact
of data assimilation on improving the predicability of turbulent combustion.

1 INTRODUCTION

In CFD modeling of highly-turbulent combustion, the difficult question to answer is
how the approximate solution of the Navier-Stokes equations augmented with chemical
reactions is related to the true solution over long intervals of time? This is difficult be-
cause the problem in hand is unstable and chaotic. That is, for example, if the exact
solution converges to an unstable stationary solution, it is most unlikely the numerical so-
lution would converge to an approximation of this unstable stationary solution [4]. While
the projection error from a continuous system to a finite dimensional system due to the
numerical methods is directly responsible for this, many other sources also contribute to
the solution inaccuracy, including the use of physical models in the mathematical equa-
tions governing the turbulent combustion process to approximate the unresolved (subgrid)
scales, turbulence-combustion interactions, and chemical reactions, and the existence of
uncertainties in the parameters of these closure models and in the flow conditions (e.g.,
initial and boundary conditions, operating conditions, etc). When extracting informa-
tion from a simulation, interpreting potential physical features, or developing insights for
models, one must exercise the caution — a simulation can only be as good as the CFD
model used for the simulation, particularly, for highly turbulent combusting flows. Natu-
rally, it is valuable to develop a methodology that helps estimate the uncertainties of the
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dynamical system, determine what would be a valid time window before the simulation
deviates from the true trajectory, and correct the simulation if that happens.

In this study, we enhance the CFD modeling with data assimilation (DA) to obtain a
more accurate simulation of the dynamical system by using available data. The maximum
likelihood ensemble filter (MLEF) [5], an ensemble-based DA method, is used to estimate
the uncertainties of the dynamical system of the turbulent flames and obtain optimal
states whenever/wherever data is assimilated. This is demonstrated using a bluffbody
stabilized turbulent methane flame, and the preliminary results signify the potential of
DA in enhancing the predictability of CFD modeling of turbulent combustion.

2 PRELIMINARY RESULTS

The DA-enhanced CFD algorithm consists of two main components, a forward CFD
model and a DA algorithm, along with a feedback/interface mechanism of the two.
Chord [1, 2, 3], a fourth-order finite-volume code, is the forward model to advance the
simulation while the data assimilation is achieved by the MLEF algorithm [5]. Figure 1
illustrates the DA-CFD solution process. Each member (1, · · · , Ne) in the ensemble along
with a control case is first propagated by the forward CFD model to the time when data
is available and the forecast error covariance, Pf , is evaluated at that time. Then, an

observation operator is employed to map the states (Q̂
f
) to the data space (O) for the

evaluation of the observation increment (the difference between “truth” and prediction).
The MLEF DA algorithm takes these information to optimize a cost function derived from
the Bayesian theorem for an optimal deterministic state (Q̂

a
) along with the statistics

(Pa,1/2). All members are then updated with the Pa,1/2 and Q̂
a
, which (re-)initialize the

next step.
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Figure 1: Three major steps in the data assimilation enhanced CFD algorithm.

Figure 2: A center plane grid showing the equilateral triangle cross section of the bluff body.
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Figure 3: Comparison of the DA-CFD solution (Q̂
DA

) of the x-momentum and total energy from the

center plane to the “truth”(Q̂
t
) and the free CFD simulation(Q̂

free
) at the 5th DA cycle.
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Figure 4: Comparison of the DA-CFD solution (Q̂
DA

) of the x-momentum and total energy from the

center plane to the “truth” (Q̂
t
) and the free CFD simulation (Q̂

free
) at the 8th DA cycle.
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The parallel DA-CFD algorithm is first applied to the nonreacting flows occurring in
the bluffbody configuration (see Fig. 2). At the inflow boundary, a cold methane-air
mixture (φ=0.65) flows in at 14.9m/s with T=310K. The total pressure at the outflow
boundary is 100 KPa. No-slip and adiabatic conditions are applied at solid wall surfaces.
The ensemble is created using the lagged forecast method, including 19 members and 1
deterministic control case. Observation data of density and velocity field are synthesized
from a reference CFD simulation for a region of x× y ∈ [0, 0.338m]× [−0.635m, 0.635m]
and a 1D y-profile at x = 0.0005m in the region, respectively. The initial conditions (ICs)
for the ensemble are artificially made different from that of the reference case, representing
uncertainties in ICs, to demonstrate the DA impact on error correction. The assimilation
frequency is 1/3 of the flow-through time. A “free” CFD simulation (without using DA)
starting from the same ICs as the control case is run for comparison. Figures 3 and 4
demonstrate the assimilation solutions from using data from the 2D region and the 1D
profile, respectively. Figure 3 shows the DA-CFD solution is properly corrected with 5
DA cycles, so are the vortex shedding frequency and phase. Figure 4 shows DA-CFD is
pulled close to the truth with 8 DA cycles. Although discrepancies exist in the line plots,
all (mass, momentum, vortex shedding frequency and phase) is being properly corrected
after a dozen DA cycles. In both cases, the non-observed component (ρe) is also being
positively impacted due to the coupling of the physics, which mathematically is realized
in the DA algorithm via the error covariance matrix. A perfect correction is not expected,
because errors (8-10%) are introduced to the synthesized observations to represent the
experimental uncertainty. Consistently, we found that the more high-confidence data are
assimilated, the more frequently they are assimilated, the faster the predictions are pulled
towards the truth. With a thorough preliminary study, we are currently investigating the
reacting flows. At the conference, we will present detailed findings of the DA impact on
the predictability of turbulent combustion.
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