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1  AEROTHERMAL MODELING AND IMPLICIT LARGE SCALE SIMULATIONS 

Jet impingement cooling is one of the most frequently used techniques for turbine blade 

cooling. Since the vortex structure and the heat transfer distribution in impingement cooling 

are extremely complex, the study on this case will not only help people improve the cooling 

method of turbine blades, but also further discover the law of turbulent flow under extreme 

conditions. 

The present work aims at characterizing the flow field and heat transfer for a schematic but 

realistic vane cooling scheme, as shown in Figure 1.1. The turbine vane is composed by 15 

holes on the intrados (lower part), 15 holes on the extrados (upper part) and 9 holes on the 

semi-cylinder part. In the literature, detailed experimental database of the investigated 

configuration can be found for both velocity and heat transfer measurements in [1, 2]. 

            
 Figure 1.1 Simulation case of the 39 holes    Figure 1.2 Simulation case of the single jet impingement cooling[4] 

 

For this 39 holes simulation case, the most refined simulation mesh used 25M elements on 

1K cores to predict the flow structure. Since the flow is extremely complex, this mesh is still 

not refined enough that it still exists some non-negligible deviations from experimental 

results. The mesh resolution is expected no less than 2 billion elements for several thousand 

timesteps in order to capture different scales of the coupled aerothermal flows. Moreover, the 

complexity of the physical parameter analysis that we shall investigate in this paper, let us 

consider this study on a single jet impingement cooling, a well-documented test case of the 

literature [3].  
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2  SINGLE JET IMPINGEMENT COOLING MODEL AND CALIBRATION 

The single jet impingement cooling test case consists in a single unconfined round jet that 

hits normally a flat plate at a certain Reynolds number. The Reynolds number is defined by 

the impingement pipe diameter and the bulk velocity. 

This flow configuration is known to lead a secondary peak in the Nusselt number 

distribution, as shown in Figure 2.1, when Reynolds number Re=23K and nozzle to plate 

distance of H/D=2 [3]. Since the near-wall complex flow structure is difficult to capture, the 

secondary Nusselt peak and the near-wall velocity profiles are consequently hard to predict 

accurately. The coupling between Flow (Navier Stokes) equations and heat transfer equation 

used in LES model is performed thanks to the Smagorinsky model that affects the viscosity, 

and the Prandtl number that impacts the conductivity [7]. 

Comparing the experimental radial velocity profiles with numerical results calculated by 

LES model, it can be seen that the velocity profile doesn’t match the experimental results, as 

shown in Figure 2.2 [4]. This discrepancy could be a result of several factors: boundary layer 

resolution, boundary conditions and also the coupling models. In this paper we assume that 

the two issues are resolved and we focus only on the coupling models. Indeed, inaccurate 

volume mass flow implies inaccurate viscosity. 

  

Figure 2.1                                                            Figure 2.2 

Figure 2.1 Comparison of radial Nusselt number distribution with an experimental reference from A.Bazile et al. 

in [4] and from Baughn et al. in [5] and with a numerical reference from Aillaud et al. in [6]. 

 

Figure 2.2 – Radial velocity profiles in the boundary layer at r/D = 1, 2, & 3 

 

Since the relationship between these two parameters and the other parameters in 

calculation is unknown, we plan to build two functions depends on radius to calibrate these 

two parameters first. Then the relationship between these parameters could be calculated after 

having an accurate Smagorinsky constant distribution and Prandtl number distribution. 

In this simulation, the calculation case is based on the case did by A.Bazile [4]. It can be 

seen that in some distribution setting of Smagorinsky constant and Prandtl number, the 

velocity profile at r/D = 3 is closer to the experimental results as shown in Figure 2.3, and the 

Nusselt number arise to the same level as experimental results at the region of r/D > 2.5 as 

shown in Figure 2.3. These observations indicate that it is possible to calibrate the Nusselt 
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number and velocity profile of the impingement cooling case by adjusting the Smagorinsky 

constant and the Prandtl number. 

      

Figure 2.3 Comparison the deep learning prediction Nusselt number distribution (left) and near-wall velocity 

profile on r/D =1.0, 2.0 and 3.0 (right) with new Smagorinsky constant and Prandtl number 
 

According to functions (2.1) to (2.3), both the Smagorinsky constant and the Prandtl 

number influence the velocity and the Nusselt number at the same time. Thus, the calibration 

of these two parameters is a non-linear process, and can hardly be completed manually. In this 

condition, using deep learning to calibrate these two parameters is one of the most probable 

method to obtain an accurate Smagorinsky constant distribution and Prandtl number 

distribution. 
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3 CALIBRATION MODEL BASED ON DEEP LEARNING 

In the calibration process, there is a loop including parameter input, calculation result 

acquisition and parameter adjustment. Since the computational cost in CFD, especially in 

coupled LES and heat transfer model, is extremely expensive, the use of deep learning to 

predict the CFD results and to simplify the result acquisition process becomes one of the most 

important links in the calibration process. 

 For the calibration process, we assume that the numerical models (including LES and 

heat transfer models) are basically accurate, and the inaccuracy of the Smagorinsky constant 

and the Prandtl number are the leading factor that causes the calculation inaccuracy. 

The calibration with deep learning includes two steps. The first step is using the current 

CFD simulations to train a low-cost prediction model by using deep learning. The second step 

consists in the use of the new prediction model instead of the CFD solvers, and executes the 
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calibration loop, until we get an accurate result. 

On the first step, the Nusselt number distribution and the velocity profile are considered as 

labels, and the Smagorinsky constant and the Prandtl number distribution are considered as 

features. We build a multi-layer artificial neural network which includes two hidden layers to 

train the prediction model. In the training stage, the LES model results are used to train the 

program to predict the Nusselt number distribution and velocity profile. The neural network 

weights are fitted following the CFD solutions for a given Smagorinsky constant and Prandtl 

number.  

On the second step, we use the Stochastic gradient descent method to optimize the 

calibration loop and to adjust the Smagorinsky constant and the Prandtl number. According to 

the experiment did by D. Cooper et al. [3], their experimental results provide the near-wall 

radius velocity profile on six check position (r/D = 0.5, 1.0, 1.5, 2.0, 2.5, 3.0) and the Nusselt 

number distribution, which include 233 check points. During this process, function (3.1) is 

considered to be a loss function which defines the accuracy of the calibration. 
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After 17 training epochs, for certain input, it can be seen that the prediction results are 

close to the CFD results, as shown in Figure 3.1. We believe that with more training, the deep 

learning results will be more accurate and smoother than the current one. 

      

Figure 3.1 Comparison the deep learning prediction Nusselt number distribution (left) and near-wall velocity 

profile on r/D =1.0, 2.0 and 3.0 (right) with CFD results 
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4  CONCLUSION 

Impingement jet cooling is of paramount interest for aerospace industry. The study of such 

a problem is very challenging and the associated physics is misunderstood. In this paper, we 

propose a new calibration model based on a deep learning approach. The two-step deep 

learning strategy allows to get very promising results through the small numerical data base 

that we built. We are enriching the data base and improving the deep learning predictor to 

improve the whole approach. Once we finished the calibration of the single jet impingement 

cooling case, we will come back to validate the realistic 39 holes test case with accurate 

calibrated CFD parameters. 
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