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Abstract. Direct numerical simulation of turbulent combustion processes including
molecular diffusion and complex chemical reaction mechanisms constitutes a challenge
even on modern supercomputers. Because of this, two developments are presented which
help to reduce the simulation time of reacting flows without affecting the accuracy of the
results:

The first development targets node-level performance of the computation of chemical
reaction rates. A converter tool has been developed which reads a reaction mechanism as
input and generates C++ source code. It contains the routines for computing chemical
reaction rates for that specific reaction mechanism. This allows to generate highly opti-
mized code that makes use of cache locality, vectorization and enables additional compiler
optimizations, leading to simulation time reductions of up to 70 %.

The second development targets parallel load imbalances. Because chemical reaction
rates are usually computed from an operator splitting approach, they are integrated over
the CFD time step by a solver for stiff ordinary differential equations. However, in regions
of the simulation where no combustion takes place, this integration requires much less
internal time steps than in regions of active combustion. This creates load imbalances
between the processes. Therefore, a load balancing technique has been developed which
identifies pairs of processes that adaptively share their workload. This has been shown to
reduce simulation times by about 30 %.

These developments have been included in a reacting flow solver in OpenFOAM and
used to perform the simulation of a turbulent flame on Germany’s largest supercomputer
on up to 28 800 CPU cores. The detailed results allow generating a DNS database of
mixed-mode flames for developing improved combustion models.
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1 INTRODUCTION

To address the climate challenges of the future by improving current combustion devices
and designing new combustion concepts, a deeper understanding of the complex multi-
physics given by the interaction of turbulent flow and chemical reactions is necessary.
Because of the multi-scale nature of combustion, which spans many length and time
scales, direct numerical simulations (DNS) for practical applications are still a challenge
on today’s supercomputers. It is therefore important to reduce the simulation time on
high performance computers without affecting the accuracy of the results [1].

The most accurate results are obtained by direct numerical simulations, where all
relevant time and length scales of both the flow and flame are resolved. This, however,
requires to include detailed reaction mechanisms which can incorporate thousands of
chemical reactions. Because of this, an automated code generation approach for speeding
up the computation of chemical reaction rates is presented in section 2. Section 3 presents
an adaptive load balancing strategy specifically for the computation of chemical reaction
rates. An application of the code is shown in section 4, where a turbulent flame is
simulated on one of Germany’s fastest supercomputers.

2 AUTOMATED CODE GENERATION

In most simulation tools for reactive flows, the information about which chemical re-
actions can occur and their specific modeling constants are read from a text file (reaction
mechanism) at the start of the simulation. Based on these information, the chemical
reaction rates are computed. In order to speed this up, a converter tool [1] has been
developed which converts the text based reaction mechanism file into C++ source code
containing routines for computing chemical reaction rates. Instead of using a general
implementation which can use arbitrary reaction mechanisms, the generated source code
only computes the reaction rates for one specific reaction mechanism of the user’s choice.
This technique is also used in other fields like GPU computing [2].

During the conversion process, chemical reactions are re-ordered so that reaction of the
same type are grouped together. This allows to compute the reaction rates in loops that
can easily be auto-vectorized by the compiler. All data is tightly packed and accessed
sequentially to maximize CPU cache usage. Information like the number of reactions
and chemical species, which differ between reaction mechanisms, are now compile time
constants and enable additional compiler optimizations.

Compiling the automatically generated C++ source code creates a library that can
directly be used in OpenFOAM. Depending on the size of the reaction mechanism, total
simulation times can be reduced by up to 70 % [1] using the optimized code.

3 ADAPTIVE LOAD BALANCING

Because the time scale of many chemical reactions is lower than for solving the Navier-
Stokes equations, chemical reaction rates are often computed using an operator splitting
approach: First, the chemical reaction rates are integrated over the flow time step ne-
glecting convection and diffusion. The average value of the reaction rate is then used as
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non-stiff source term in the transport equations for chemical species and energy. This in-
tegration is performed with special solvers for stiff ordinary differential equations (ODE),
which use an adaptive internal time step for the integration. However, the number of in-
ternal time steps depends on how reactive the gas mixture is locally. For example, within
the flame front where chemical reactions occur at high temperatures, the integrator has to
take many internal time steps. In regions where no combustion takes place, e.g. in parts
of a nozzle for pure air, the integrator only takes a few internal time steps. This creates
an imbalance between processes working on different parts of the simulation domain.

Because of this, an adaptive load balancing algorithm was introduced [3]. In this
algorithm, all processes are sorted by the time they need to integrate the chemical reaction
rates for all cells in their part of the computational domain. The fastest process then forms
a pair with the slowest process. The second fastest forms a pair with the second slowest
and so on. The two processes within a pair then share their workload based on the
relative timings between them. This has the advantage that only pair communication has
to be done. Because chemical reaction rates can be computed from local thermo-chemical
quantities without knowledge of any neighbor cells, the workload can be freely shared
which makes the method attractive for unstructured grids. Additionally, this method
can be combined with other load balancing approaches, e.g. arising from adaptive mesh
refinement. Figure 1 shows measurements for a flame with and without the load balancing
approach [3]. It shows the time required for computing chemical reaction rates on each
MPI process. Because the slowest process determines the overall time, using the load
balance approach reduces the time by about 30 %.
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Figure 1: Time required to compute chemical reaction rates on each process with (right) and with-
out (left) load balancing.

4 HPC SIMULATION OF TURBULENT COMBUSTION

A high performance computing (HPC) application is given by the simulation of the
turbulent Sydney/Sandia flame [4]. A modified OpenFOAM solver for direct numerical
simulation utilizing the two optimizations is used for the simulation, which is additionally
coupled to Cantera [5] for computing detailed diffusion coefficients. Two consecutive
simulations have been performed: the non-reactive mixing of fuel and oxidizer (Fig. 2
top) and the reactive flame simulation (Fig. 2 bottom). The simulations have been run
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on Germany’s fastest supercomputer at that time Hazel-Hen on up to 28 800 CPU cores,
showing linear scaling behavior up to 10,000 CPU cores [1]. Comparison with experimental
measurements of that flame show excellent agreement [4] and the results allow the detailed
study of mixed-mode combustion.

Figure 2: Vorticity during the mixing of fuel and air (top) and vorticity iso-surface colored by velocity
with heat release cutting plane through the flame (bottom).

5 CONCLUSIONS

- Optimized code from automated code generation can speed up simulations by 70 %

- Adaptive pair-wise load balancing can reduce chemistry calculation times by 30 %

- These two optimizations are included in an OpenFOAM solver for combustion DNS,
which is additionally coupled to Cantera and Sundials

- The code shows excellent scalability up to 28 800 CPU cores

- Results of the Sydney/Sandia flame show very good agreement with experiments
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