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Summary.  In this work we have studied the coupling of CFD with machine learning (neural 

networks) models on two different case studies. The first case study is the mixing step of the 

mayonnaise production for which the performance of the data-driven model is very good, 

with errors below 1% between predictions of the surrogate model and CFD results: the 

network can also be used for extrapolation in ranges of operating conditions slightly outside 

the training range. The second case is fluid flow and transport of a colloid through porous 

media, where the surrogate model performance is slightly worse than for the previous case 

with average errors lower than 8% for the prediction of both permeability and average volume 

concentration.  

 

1 INTRODUCTION 
Machine learning techniques such as neural networks and deep learning spread in everyday 

applications and their impact is considered a revolution. In the scientific research these 

algorithms started to be employed in the last decade for example for new materials 

development [1] or biological molecules structure prediction [2]. Although chemical 

engineering is not properly considered a “big data” field, if simulations can be executed on 

the studied system it is possible to obtain a dataset large enough for the implementation of 

these techniques [3]. In this work computational fluid dynamics simulations are inserted in a 

workflow for the implementation of neural networks algorithms aimed at the construction of 

data-driven models that could be useful to improve multiscale modelling and industrial in-line 

control, as they are able to instantaneously predict a certain output after be trained with the 

CFD results. In this context two case studies are approached: the production of food 

emulsions and the flow and transport through porous media.  

The production of food emulsions, mayonnaise in particular, is a process engineering 

example of application of neural networks. It is carried out in two stages: initially the 

ingredients are mixed in batch, then they are conveyed into a rotating equipment, the cone 

mill, which imparts the proper shear rate for the emulsification [4]. This last step of the 

proceeding is simulated through CFD and the data-driven model trained with those results is 

able to predict macroscopic properties of the system which can be useful to implement more 
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sophisticated models, such as population balance models.  

Instead the study of particle transport in porous media touches a wide variety of different 

fields: from the study of contaminant transport in aquifers to the design of effective packed 

bed reactors in chemical engineering [5]. Porous media are characterized by many parameters, 

which are generally geometric, and whose impact and synergy of action may be impossible to 

analytically predict; these particularities make it a prime candidate for machine learning 

approaches, which are particularly suited to extract essential features hidden in data. 

 

2 METHOD AND NUMERICAL DETAILS 

The first step of the workflow is to build the computational models: the CFD simulations 

are performed on the open source toolbox OpenFOAM v6.  

For the food emulsions case, the geometry is axisymmetric: the cone mill is modeled as 

two coaxial truncated cones, the internal one rotates and the external one is fixed. The 

simulations are performed under the hypothesis of an incompressible, pseudo-single-phase 

non-Newtonian fluid, where an appropriate rheological law is provided by Dubbelboer et.al. 

[4]. The velocity and pressure fields are determined by solving the continuity equation and the 

Navier-Stokes equations through the SRFSimpleFoam solver imposing a no-slip condition on 

the rotor and null velocity on the stator as boundary conditions.  

For the porous media case, we implemented a bidimensional geometry constituted by a 

random periodic arrangement of grains having a Gaussian diameter distribution. Initially a 

representative elementary volume (REV) study has been conducted in order to evaluate the 

minimum number of grains (or the minimum dimension of the box) necessary to have a 

constant porosity. After the solver simpleFoam is used to solve the Navier-Stokes equation in 

laminar conditions, as boundary conditions we imposed periodic conditions on the upper and 

lower face of the domain, a non-slip condition on the surface of the grains and a constant inlet 

pressure. For the transport simulations the advection-diffusion equation is solved through the 

solver scalarTransportFoam imposing a constant unitary inlet concentration and a null 

concentration on the surface of the grains, representing a perfectly efficient filtration process. 

After having designed the computational models, the simulations have been run on an HPC 

cluster in order to create the dataset for the training of the neural networks. The simulations 

differ in some input operating conditions and geometrical parameters which are varied in an 

established range: these will be the features for the prediction made by the neural network. 

For the food emulsion case the inlet velocity of the fluid, the rotating velocity of the cone 

mill, and the distance between the cones are varied and the volume average strain rate is the 

output result of the simulations; we chose this quantity as the output as it is the most 

impactful on droplet coalescence and breakage rates. For the case of flow in porous media, the 

porosity of the system, the mean diameter, and the standard deviation of the distribution of the 

grains diameter are the features chosen to predict the permeability of the medium, evaluated 

through the Darcy equation. The inlet pressure and the colloid diameter are added to the 

previous predictors to evaluate the volume average concentration of the colloid in the 

medium.  

The dataset created is then fed to a fully connected neural network characterized by one 

hidden layer containing 20 neurons for the food emulsion case and 40 neurons for the porous 



3

 

A. Marcato, M. Ferrari, G. Boccardo, A. Buffo, M. Vanni and D. Marchisio 

 

media case. The machine learning models are created using the Python library Keras. 

 

3 RESULTS 

Figure 1a shows a contour plot of the axial velocity of the fluid in the cone mill where, as 

Reynolds number is greater than 75, the formation of a Taylor vortex is apparent. Figure 1b 

shows a detail of the contour plot of the colloid concentration in the porous medium. 

Figure 1: Contour plot for the axial velocity (Re = 138.5) (a) and for the concentration (Pe = 1629) (b)  

 

As it has been mentioned, the CFD results were analysed and post-processed with the 

purpose of obtaining, for each  geometry and operating condition considered, a set connecting 

the input features of the simulation with the result(s) obtained. The numerosity of this set is 

equal to the number of simulations performed to build the training set for the neural network 

(which is numbering in the thousands). After the neural network training process, the end 

result is a surrogate black-box model capable of predicting the output values when given a 

new set of input features, with varying accuracy depending on the model considered and on 

the distance of the new input feature from the original set of features used in the training 

process.  

Figure 2: Neural network performance for the food emulsion case: (a) parity diagram, (b) evaluation on the 

model outside the range explored during training 

This accuracy is defined as the error between results of CFD with new inputs, and predictions 

of the neural networks with these new inputs. 

For the food emulsions case the accuracy of the data-driven model inside the range of 

(a) 
(b) 

(a) (b) 

(a) 
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feature explored during the training is very good, in fact, the error is less than 1% (Figure 2a); 

while the error increases the more the feature moves away from the training range (Figure 

2b). 

For the porous media case the average error associated to the prediction of the permeability 

is 5.8% (Figure 3a), and the one of the volume average concentration is 5.6% (Figure 3b).  

Figure 3: Neural network performance for the flow and transport in porous media case: (a) permeability 

prediction, (b) volume-averaged concentration prediction 

 

4 CONCLUSIONS 

In this work we proved the possibility of using CFD simulations results as training data for 

machine learning algorithms on two relevant case studies in chemical engineering: the 

production of food emulsions and the flow and transport through porous media. The time 

required for the resolution of the simulations varies from few minutes for the food emulsion 

case to about thirty minutes for the transport ones; the neural network training needs less than 

five minutes in both cases, while the calls for new outputs, given new input samples, are 

instantaneous: this means that data-driven models can be easily integrated in other multi-scale 

models. The future perspectives (and current work) are the integration of an upscaling 

procedure for the characterization of colloid transport in the porous medium, and the 

exploration of new deep learning techniques, such as convolutional neural networks, for the 

prediction/generation of the entire flow field (and not just averaged integral values) starting 

from a simple geometric description of the case.  
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