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Abstract. We leverage the performance of 3D unstructured mesh deformation in the
context of fluid-structure interactions. We employ the Radial Basis Function (RBF) in-
terpolations as a well-known numerically robust approach that produces deformed meshes
with high fidelity. The resulting operator is a dense symmetric matrix of size N, with N
the number of nodes in the boundary of the mesh. The cubic arithmetic complexity and
the quadratic memory footprint often make the system challenging to solve using a direct
method. In this paper, we accelerate the computations of 3D unstructured mesh defor-
mation based on RBF interpolations using tile low-rank matrix computations. The idea
consists in exploiting the data sparsity of the matrix operator of the linear system by
approximating off-diagonal tiles up to an application-dependent accuracy threshold. We
demonstrate the effectiveness of our implementation by assessing the numerical accuracy
of the mesh deformation. We then provide preliminary performance benchmarking on two
shared-memory systems. The high performance tile low-rank solver permits to achieve up
to 20-fold performance speedup over the state-of-the-art dense matrix solvers.

1 INTRODUCTION

The simulation of physical phenomena involving moving bodies undergoing large mesh
deformations represents a complex challenge. Indeed, the deformed mesh often has poorer
quality than the initial one, which may lead to inconsistent and unstable numerical solu-
tions. The mesh quality may get even worse during the time integration since its elements
may become inverted or highly skewed, which may result in invalidating the mesh needed
to perform simulation. Mesh deformation is a standard method for solving the aforemen-
tioned issue. It aims at deforming the mesh in order to track the moving geometries [6].
It uses using r-adaptation techniques (i.e., modifying only the mesh point coordinates and
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leaving the connectivity unchanged) driven by either physical or numerical analogies. This
approach is often coupled to mesh optimization operations to maintain a good quality of
the mesh, while deforming it using either local re-meshing operations such as connec-
tivity change (vertex insertion/deletion and face/edge swapping) and smoothing (vertex
displacements) [3]. In this paper, we study the Radial Basis Function (RBF) [7] scheme,
one of the main interpolation methods that produces meshes with high fidelity. The RBF
technique is computationally expensive for tracking 3D moving objects since it requires
solving at each time step a large dense linear system. In particular, we accelerate the
solver by exploiting the data sparsity of the symmetric positive-definite matrix operator
to reduce the memory footprint as well as the arithmetic complexity. Our preliminary re-
sults demonstrate a performance gain of our Tile Low-Rank (TLR) Cholesky-based solver
against the state-of-the-art dense solvers from optimized libraries on two shared-memory
systems.

2 RADIAL BASIS FUNCTION INTERPOLATIONS FOR 3D UNSTRUC-
TURED MESH DEFORMATION

Radial basis function (RBF) interpolation is used here to describe the displacement of
the internal volume nodes given the displacement of the boundary nodes. As described
in [4], the displacement d̃ in the whole domain, can be approximated by a sum of basis
functions as follows: d̃(x) =

∑
i=1,nb

αiφ(||x−xbi ||)+p(x), where xbi = [xbi , ybi , zbi ] are the
boundary nodes in which the values are known, p a polynomial, nb the number of bound-
ary nodes and φ a given basis function. The coefficients αi and the polynomial p are
determined by the interpolation conditions d̃(xbi) = dbi , where db contains the known dis-
placement values at the boundary. There are additional requirements

∑
i=1,nb

αiq(xbi) = 0
for all polynomials q with a deg(q) ≤ deg(p). The minimal degree of polynomial p depends
on the choice of the basis function φ. A unique interpolant is given if the basis function
is a conditionally positive definite function. If the basis functions are conditionally posi-
tive definite of order m ≤ 2, a linear polynomial can be used. Herein, we only consider
basis functions that satisfy this criterion. Although the size of the linear system is much
smaller than the number of degrees of freedom for the overall mesh deformation problem,
the arithmetic complexity remains a computational challenge for large 3D moving objects.
An iterative solver may fail for matrices with high condition number or may simply ren-
der inefficient in presence of multiple right hand sides. Instead, we employ a direct dense
solver that takes advantage of the data sparsity of the symmetric positive-definite matrix
to reduce the time complexity.

3 TILE LOW-RANK MATRIX COMPUTATIONS

We solve the resulting RBF linear system using the Tile Low-Rank (TLR) Cholesky
factorization, as implemented in the HiCMA library [1]. The main idea of HiCMA consists
in approximating the off-diagonal tiles of the symmetric positive-definite matrix up to an
application-dependent accuracy threshold. Once the matrix approximated using typically
the Randomized Singular Value Decomposition (RSVD), the TLR Cholesky can then
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Figure 1: Snapshots of the mesh deformations for two interpenetrating 3D cylinders.

operate on each logical tile, represented in terms of compressed data structures. HiCMA

relies on the dynamic runtime system StarPU to orchestrate and asynchronously schedule
the various computational tasks onto the underlying hardware resources.

4 PRELIMINARY ASSESSMENTS
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(a) Accuracy results.
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Figure 2: Numerical and performance assessments.

The double precision carried experi-
ments have been done on two shared-
memory systems: a two-socket 20-core
Intel Xeon Gold Skylake 6148 CPUs @
2.40 GHz and an AMD Epyc system with
two-socket 32-core 7601 CPUs @ 2.2GHz.
For BLAS and LAPACK implementations,
MKL (v2018) and OpenBLAS (v0.2.20)
are used on the Intel and AMD systems, re-
spectively. Figure 1 shows two cylinders in-
terpenetrating each other with only a thin
layer of elements in-between. Both cylinders are placed in a rectangular domain of dimen-
sions of 98668 vertices and 536944 tetrahedra. The size of the corresponding RBF’s linear
system to solve is 55K. Figure 2(a) reports the numerical results using the infinite norm
for several accuracy thresholds, i.e, from 1e− 2 to 1e− 7. As expected, the error is of the
same order than the accuracy threshold and linearly decreases as the accuracy threshold.
We plan to report numerical results for lower accuracy since the application is resilient
to further digit losses. However, a TLR LU-based solver may have to be considered since
the symmetric matrix may loose its positive-definiteness. Figure 2(b) highlights prelimi-
nary results of TLR Cholesky applied to the RBF matrix operator on the Intel and AMD
architectures. For the 55K matrix size considered, HiCMA TLR Cholesky achieves up to a
20-fold speedup against dense Cholesky from MKL and OpenBLAS implementations on
the Intel and AMD systems, respectively. We have employed a matrix scaling phase in
order to restore the positive definiteness of the RBF matrix encountered for low accuracy
thresholds, as explained in [5]. We plan to run against larger RBF matrices and scale
up to distributed-memory systems. Figure 3 depicts the rank heatmaps for the studied
accuracy thresholds, after the matrix compression phase and after the Cholesky factoriza-
tions. Since the tiles with high ranks are located at the top left corner of the symmetric
matrix after compression, the rank growth remains limited after Cholesky computation
and only impacts the top left block of tiles.
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5 CONCLUSIONS

We have accelerated up to a 20-fold speedup the 3D unstructured mesh deformation
based on radial basis functions interpolations using tile low-rank Cholesky computations.
We plan to study larger 3D moving objects and compare performance / accuracy against
other low-rank matrix approximations [2].
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Figure 3: Rank heatmaps of the RBF matrix operator: initial (top row) and final (bottom row) ranks,
varying in column from accuracy 1e− 2 to 1e− 7.
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