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Abstract. The essence of turbulence are the smallest scales of motion. They result from
a subtle balance between convective transport and diffusive dissipation. Mathematically,
these terms are governed by two differential operators differing in symmetry: the convec-
tive operator is skew-symmetric whereas the diffusive is symmetric and positive-definite.
On the other hand, accuracy and stability need to be reconciled for simulations of turbu-
lent flows in complex geometries. With this in mind, a fully-conservative discretization
method for general unstructured grids was proposed in Ref. [1]: it exactly preserves the
symmetries of the underlying differential operators on collocated grids. Hence, unlike
other formulations, the discrete convective operator transports energy from a resolved
scale of motion to other resolved scales without dissipating energy, as it should do from
a physical point-of-view. Therefore, we think that apart from being a right approach for
large-scale DNSs of turbulence, it also forms a solid basis for testing subgrid scale LES
models. In this work, we will explore the possibility to build up staggered formulations
based on the set of discrete operators defined for collocated meshes.

1 Introduction

We consider the simulation of turbulent, incompressible flows of Newtonian fluids. Under
these assumptions, the dimensionless governing equations in primitive variables read

∂tu+ (u · ∇)u = ν∇2
u−∇p, ∇ · u = 0, (1)

where u is the velocity field, p is the kinematic pressure and ν is the kinematic viscosity.
The basic physical properties of the Navier-Stokes (NS) equations (1) can be deduced from
the symmetries of the differential operators. In a discrete sense, it suffices to retain such
operator symmetries to preserve the analogous (invariant) properties of the continuous
equations [2]. However, for unstructured meshes, it is still a common argument that
accuracy should take precedence over the properties of the operators. Contrary to this,
our philosophy is that operator symmetries are critical to the dynamics of turbulence
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Figure 1: Examples of DNSs computed using symmetry-preserving discretizations. Top: air-filled (Pr =
0.7) Rayleigh-Bénard configuration studied in Ref. [3]. Instantaneous temperature field at Ra = 1010

(left) and instantaneous velocity magnitude at Ra = 1011 (right) for a span-wise cross section are shown.
The later was computed on 8192 CPU cores of the MareNostrum 4 supercomputer on a mesh of 5.7 billion
grid points. Bottom: DNS of the turbulent flow around a square cylinder at Re = 22000 computed on
784 CPU cores of the MareNostrum 3 supercomputer on a mesh of 323 million grid points [4] .

and must be preserved [1, 2]. Namely, the convective operator is represented by a skew-
symmetric coefficient matrix and the diffusive operator by a symmetric, positive-definite
matrix. These ideas are briefly revised in the next section. Then, their extension to
unstructured meshes is discussed in the last section.

2 Starting point: staggered Cartesian meshes

The fully conservative discretization of the incompressible NS equations (1) is briefly
described in this section. Otherwise stated, we follow the same operator-based nota-
tion than in [2]. The symmetry properties of the underlying differential operators are
preserved: the convective operator is represented by a skew-symmetric matrix and the
diffusive operator by a symmetric positive-definite matrix. In short, the temporal evo-
lution of the spatially discrete staggered velocity vector, us ∈ R

m, is governed by the
following operator-based finite-volume discretization of Eqs.(1)

Ωs

dus

dt
+ C (us)us + Dus −M

T
p
c
= 0s, Mus = 0c, (2)
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where pc ∈ R
n is the cell-centered pressure scalar field. The dimension of these vectors, n

andm, are the number of control volumes and faces on the computational domain, respec-
tively. The sub-indices c and s refer to whether the variables are cell-centered or staggered
at the faces. The diffusive matrix, D ∈ R

m×m represents the integral of the diffusive flux
−(µ/ρ)∇u · n through the faces. Like the underlying differential operator, ∇2 = ∇ · ∇,
the diffusive operator consists of the product of a divergence matrix, Ms ∈ R

m×m, and
a gradient matrix. The divergence is discretized and the discrete gradient becomes the
transpose of the discrete divergence (multiplied by a diagonal scaling). This construction
leads to a symmetric, positive-definite, approximation of the diffusive operator given by
D = νMsΩ

−1
v
MT

s
, where Ωv ∈ R

m×m is a diagonal matrix containing the sizes of the control
volumes associated with the faces of the velocity control volumes. The previous equation
corresponds to Eq.(37) in [2]. For further details about the discretization of the diffusive
operator the reader is referred to this work. The matrix M ∈ R

n×m is the face-to-center
discrete divergence operator whereas the integral of the gradient operator is given by the
transpose of M. The diagonal matrix, Ωs ∈ R

m×m, describes the sizes of the staggered
control volumes and the approximate convective flux is discretized as in [2]. The resulting
convective matrix, C (us) ∈ R

m×m, is skew-symmetric, i.e.

C (us) + C
T (us) = 0. (3)

In a discrete setting, the skew-symmetry of C (us) implies that

C (us) vs ·ws = vs · C
T (us)ws = −vs · C (us)ws, (4)

for any discrete velocity vectors us (if Mus = 0c), vs and ws. Then, the evolution of the
discrete energy, ‖us‖

2 = us · Ωsus, is governed by

d

dt
‖us‖

2 = −us ·
(

D + D
T
)

us < 0, (5)

where the convective and pressure gradient contributions cancel because of Eq.(3) and the
incompressibility constraint, Mus = 0c, respectively. Therefore, even for coarse grids, the
energy of the resolved scales of motion is convected in a stable manner, i.e. the discrete
convective operator transports energy from a resolved scale of motion to other resolved
scales without dissipating any energy, as it should be from a physical point-of-view. It
is noteworthy to mention that in the last decade, many DNS reference results have been
successfully generated using this type of discretization (see Figure 1, for example).

3 Unstructured meshes. Collocated or staggered?

Accuracy and stability need to be reconciled for numerical simulations of turbulent
flows around complex configurations. With this in mind, a fully-conservative discretiza-
tion method for general unstructured grids was proposed in Ref. [1]: it exactly preserves
the symmetries of the underlying differential operators on a collocated mesh. In sum-
mary, and following the same notation than in Ref. [1], the method is based on a set of
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five basic operators: the cell-centered and staggered control volumes (diagonal matrices),
Ωc and Ωs, the matrix containing the face normal vectors, Ns, the cell-to-face scalar field
interpolation, Πc→s and the cell-to-face divergence operator, M. Once these operators
are constructed, the rest follows straightforwardly from them. Therefore, the proposed
method constitutes a robust and easy-to-implement approach to solve incompressible tur-
bulent flows in complex configurations that can be easily implemented in already existing
codes such as OpenFOAMR© [5]. However, any pressure-correction method on collocated
grids suffer from the same drawbacks: the cell-centered velocity field is not exactly in-
compressible and some artificial dissipation is inevitable introduced. Conversely, the pro-
jection of a staggered velocity onto a divergence-free space is a well-posed problem: it can
be uniquely decomposed into a solenoidal vector and the gradient of a scalar (pressure)
field. This can be easily done without introducing any dissipation as it should be from a
physical point-of-view. In this work, we will explore the possibility to build up staggered
formulations based on the above mentioned reduced set of discrete operators. Hence,
the proposed method constitutes a robust and easy-to-implement approach to solve in-
compressible turbulent flows in complex configurations. Moreover, we also consider that
the symmetry-preserving discretization method presented here forms an excellent starting
point for LES. Namely, the energy of the resolved scales of motion is convected in a stable
manner: that is, the discrete convective operator transports energy from a resolved scale
of motion to other resolved scales without dissipating any energy, as it should do from a
physical point-of-view.
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