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Abstract. The present study applies a space-time parallel CFD algorithm with adaptiv-
ity to solve fluid dynamical systems governed by the compressible Navier-Stokes equations.
The space-time parallelism is achieved by multigrid reduction-in-time while the adaptiv-
ity is realized using adaptive mesh refinement in space with subcycling in time. Verified
and validated, the space-time parallel algorithm is demonstrated by solving compressible
flows with convection, diffusion, and reaction.

1 INTRODUCTION

The birth of supercomputers fundamentally changed the design and implementation of
CFD algorithms, along with their engineering applications, notably, to aerospace. Parallel
CFD algorithms allow for solving fluid dynamics problems with the increasing complexity
and high-confidence prediction of flow physics, and the aerospace industry has seen a
50% reduction in wind tunnel testing since 1980’s. Nevertheless, CFD has been on a
plateau during the past decade [9]. To adequately solve vortex dominated and transitional
flows at high-Reynolds number, particularly with the presence of solid surfaces due to
complex geometries, high-order large eddy simulation algorithms are necessary. Massively
parallel implementation of these algorithms must be explored in both spatial and temporal
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domains to benefit from the growing computer power with unprecedented evolution, such
as individual processor speeds have stalled while concurrency has increased (See Fig. 1).

1970 1980 1990 2000 2010
10−1

100

101

102

103

104

105

106

107

Year

Cores

Frequency (MHz)

Transistors (Thousands)

Figure 1: Individual processor speeds have stalled
while concurrency has increased. Adapted from
Yelick[12]

The diagrams in Fig. 2 portray two paral-
lel algorithms with adaptive mesh refinement
(AMR); Fig. 2a shows the spatial parallelism
while time stepping is sequential and Fig. 2b
shows parallelization in space and time, the
present algorithm. The present adaptive par-
allel space-time algorithm is built upon sev-
eral software packages developed by the com-
putational mathematics and CFD communi-
ties. Specifically, XBraid [2], a non-intrusive
open-source implementation of multigrid re-
duction in time (MGRIT), enables the tem-
poral parallelism. Chombo [1], an open-
source framework for patch-based structured
AMR, provides refinement in space and time.
The CFD application code, Chord [8, 7], is a
fourth-order accurate finite-volume method
solving compressible flows, with chemical re-
actions if combustion is considered, and the
solution is advanced in time using the standard four-stage Runge-Kutta method. Further
information on the algorithmic implementation, its verification and validation, along with
the speedups can be found in our recent work [4, 3, 5].
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Figure 2: Parallelization strategy for a time-sequential algorithm and a time-parallel algorithm.
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2 Preliminary Results

While the parallel space-time algorithm has been successfully demonstrated for fluid
dynamics problems dominated by diffusion physics or periodicity in time [4, 3, 5], con-
vective physics appears to challenge the convergence rate of multigrid methods [6] which
are used for the time parallelization. The present study is intended to demonstrate that
the algorithm is effective for solving multi-physics fluid dynamics problems. First, we
perform a verification of the algorithm using the method of manufactured solutions. Fol-
lowing the methodology described by Salari and Knupp[11], a solution is manufactured
(given in the supplementary file) to the compressible Navier-Stokes equations including
continuity, momentum, and energy. With Maxima [10], the source terms, as well as the
initial and boundary conditions are calculated. Trigonometric functions create a solu-
tion field that varies spatially, and a Gaussian function perturbs the amplitude of the
trigonometric functions in time. This creates solution gradients that vary over space and
time, allowing for the AMR application. The space-time grid with AMR is exhibited by
Fig. 3 where mesh refining and coarsening are executed in response to the physics-based
criteria on the spatial gradients and the rate of change of the solution variables. The
grid convergence rate of the space-time parallel algorithm is examined and compared to
the time-sequential, space-parallel algorithm in Figs. 4 and 5 for mass and x-momentum,
respectively, verifying the fourth-order solution accuracy of the underlying CFD solver
(for all solution variables, not shown here). Furthermore, the figure confirms that the
integrated algorithm (Chord/Braid) reproduces the fourth-order accuracy when execut-
ing in the sequential time stepping. Figure 6 compares the mass through the center-line
in the time-parallel to the exact solution, showing the close agreement. Conservation
is preserved by both algorithms. Figure 7 measures the multigrid convergence on a 4-
level grid. The slow convergence rate is far from ideal, and the investigation is being
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Figure 3: A representation of the space-time mesh generated for the case.
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carried out. The verified and validated space-time parallel algorithm will be applied to
solve CFD problems with convection, diffusion, and reaction. At the conference, we will
present detailed findings, including the speedups of the space-time parallel algorithm over
the conventional space-parallel algorithm.
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Figure 4: Grid convergence rate of ρ
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Figure 5: Grid convergence rate of ρu.
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Figure 6: A comparison of the 4 level parallel-
in-time solution to the exact solution at x=0.5
and tn=640.
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Figure 7: Multigrid convergence.
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