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Abstract. Traditional HPC simulations and AI / Big Data applications face similar chal-
lenges when solving extreme-scale scientific problems: bulk synchronous parallelism, ex-
pensive data motion, high algorithmic complexity and large memory footprint. Processors
and memory technology scaling have mitigated these challenges thanks to an exponential
growth in processor performance but only a constant increase in memory speed and capac-
ity. The free lunch is perhaps over as we approach the hard physical limit of silicon. The
energy efficiency gap between communication and computation keeps widening and has
even forced the hardware and software communities for an immediate action of co-design.
We describe the challenges encountered during the last 15-year journey of reshaping high
performance linear algebra libraries for massively parallel systems. We explore disrup-
tive numerical algorithms and programming models required to continue supporting HPC
applications as well as emerging AI workloads at the dawn of the exascale age.

1 A RENAISSANCE IN COMPUTATIONAL LINEAR ALGEBRA

A renaissance has come to computational linear algebra in form of hierarchically low
rank matrices (henceforth ”H-matrices”). They are useful in a wide variety of applications
leading to dense matrices, such as mechanics and electrostatics formulated in terms of
Green’s functions, maximum likelihood in spatial statistics built on covariance matrices,
optimization based on Hessians, and even applications of sparse matrices during which
dense Schur complements are formed. Formally dense operators are often ”data sparse”
in the sense that their input-to-output maps can be mediated to high accuracy in far less
than n2 operations, and inverted in far less than O(n3) operations. Indeed, the curse
of dimensionality can be mitigated in these applications and others by the blessing of
low rank. The emergence of algorithms exploiting hierarchical low rank over the past two
decades, since the seminal work of Hackbusch [5] and Tyrtyshnikov [8], could hardly come
at a more auspicious time in terms of computer architecture. A main motivation is the
decreasing ratio of memory bandwidth to processing power [7] and the growing latency
in clock cycles of accessing an element of deep memory, which can be a thousand or more
for DRAM. Data sparsity implies that relatively small cache memories can hold relatively
highly accurate representations of operators. The savings in latency from residing high on
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the memory hierarchy is even more important than the savings in operation count from
working directly with the compressed representation.

2 TILE LOW-RANK MATRIX COMPUTATIONS

Tile low rank linear algebra was inspired by the block low rank (BLR) compression of
Schur complements of elliptic PDE operators in [3]. A m×n matrix A is practically of low
rank if A = UV T +E, where U is m×k, V is n×k, for k < mn/(m+n), where ||E||2 < ε
is small enough to be neglected and rank k depends upon the accuracy tolerance ε.

In a typical TLR matrix application, A is partitioned in advance into blocks of uniform
size related to the level of the memory hierarchy in which they should fit and/or the
number of threads available on the node, with due consideration of ordering to cluster
degrees of freedom with the strongest coupling along the primary and possibly other
diagonals. Each tile that is believed to be a candidate for low rank representation is
then independently compressed using any of a variety of algorithms to determine an
acceptable k, typically by considerations local to a tile. Ranks may vary across tiles;
hence the task of compression may not be load-balanced across tiles, nor may be the
subsequent tasks of manipulating tiles within the context of a standard tile algorithm.
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Figure 1: An originally dense symmetric positive
definite matrix decomposed into tiles (left) and a
DAG for its Cholesky factorization (right).

The latter may require matrix-matrix mul-
tiplications, matrix-matrix additions, or
the application of the inverse of a full-rank
tile to other tiles. In the context of tile
algorithms, this is not a major drawback
because they are typically executed via a
task-based dynamic runtime system based
on a directed acyclic graph (DAG).

For a dense symmetric positive definite
matrix, a tile-based Cholesky factorization
defines a sequence of diagonal block factor-
izations, column block scalings by diagonal
block inverses, and block row multiplication and addition updates. A sample DAG for the
4× 4 blocked symmetric matrix A on the left in Figure 1 is shown to the right. Colored
rectangular nodes represent tasks and the arrows data dependencies. Each of the four
diagonal block factorizations (POTRF, in green) is followed by block updates to its own
lower subtriangle, through the last block A44, which is its own subtriangle.

A TLR data structure begins with the tile decomposition of A. Its diagonal blocks,
Dii, are the same as those of A. We then replace the off-diagonal blocks, Aij for i > j,
with low rank factorizations, UijV

T
ij , where the factors have rank kij < nb, where nb is the

(traditionally uniform) block size. Preferred compression routines are the Randomized
SVD [6] or adaptive cross-approximation (ACA) [4]. Whenever a low rank tile is updated,
it requires recompression.

3 PERFORMANCE RESULTS
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Figure 2: Shared-memory implementations of
DPOTRF on three generations of Intel hardware and
two generations of algorithms.

TLR technique has provided another
one to two orders of magnitude of per-
formance in the last two years, depend-
ing upon compressibility. TLR is the main
compressed data structure implemented in
the Hierarchical Computations on Many-
core Architectures (HiCMA1) library [1],
which is described herein.

Figure 2 illustrates this performance
boost for the DPOTRF kernel on a two-
dimensional geospatial covariance matrix
represented to tolerance 10−8 or better in
Froebenius norm for each tile for three generations of Intel manycore and two gen-
erations of algorithms, for a range matrix sizes from 27K up to 297K, as mem-
ory capacity allows. The classical algorithm follows an O(n3) scaling and can be
extended only up to matrices of dimension 108K on an Intel Sandy Bridge pro-
cessor using Intel’s Matrix Kernel Library (MKL). Successive generations of In-
tel processor hardware, namely Haswell and Skylake, provide runtime improvements
(red arrows) and memory capacity improvements while following the same scaling.
The TLR algorithm as implemented in the HiCMA Library [1] shows closer to quadratic
scaling in runtime with problem size, with significantly greater problem-size accommoda-
tion and runtime reductions (green arrows) on the same hardware. The blue arrow shows
the product of the hardware and algorithmic advances, already more than two orders of
magnitude for matrices of dimension 108K and growing with size. We focus on factoriza-
tion time only since the time to generate and compress relative to the factorization time
decreases due to the difference in the asymptotic complexities of the respective phases [2].

Figure 3: Distributed-memory implementations of DPOTRF
on a Haswell-based Cray XC40, on 16 through 256 nodes for
ScaLAPACK and TLR on 16 nodes (left). Memory footprints of
double precision synthetic and covariance matrices of dimension
1M for a range of block tolerance thresholds, compared with
fully dense (right).

Still larger matrix sizes can
be accommodated by distributed-
memory versions of (P)DPOTRF
and HiCMA, using MPI, as shown
on the left in Figure 3. With the
memory savings of TLR, larger
problems can be accommodated
for a given node count, and
nearly two orders of magnitude of
runtime improvement come from
algorithmic improvement, better
than from the comparable ratios
of concurrency. A quantification
of the memory footprint improve-
ment of TLR is shown on the right in Figure 3. A symmetric matrix of dimension 1M

1HiCMA is a transliteration of the Arabic word for “wisdom”
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stored in the lower triangle in 8-Byte precision requires 4 TB. With a tight tolerance of
10−13, worthy of essentially full precision, TLR enables more than an order of magnitude
of storage savings. Depending upon the compressibility of the matrix and the accuracy
threshold, nearly two orders of magnitude of storage savings are possible. The matrix
is generated tile-by-tile using a user-defined matrix kernel and compressed on the fly.
Therefore, at no single point in time does the full dense matrix need to reside in main
memory.

4 CONCLUSIONS

We have demonstrated the attractiveness of TLR because it can be retrofit into existing
tile-based shared-memory and distributed-memory software by simply overloading the
fully dense matrix kernel operations with their low rank counterparts, while providing
decent performance improvements.
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