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Abstract. Lattice Boltzmann methods are well suited to highly parallel computational
fluid dynamics simulations due to their separability into a perfectly parallel collision
step and a propagation step that only communicates within a local neighborhood. The
implementation of the propagation step bounds both the maximum possible bandwidth-
limited performance and places restrictions on the memory layout and usage of vector
instructions. This contribution continues the work on implicit propagation pattern started
by the A-A pattern [1] and its SSS formulation [2] to introduce a revert- and paddingless
Periodic Shift (PS) pattern. Extensive benchmark results for SSS and PS on Intel and
AMD CPUs including a Intel Xeon Phi processor using AVX2 and AVX-512 as well as
GPUs using CUDA are provided.

1 IMPLICIT PROPAGATION
Implicit propagation is based on manipulating the SFC used for mapping spatial cell

locations to directly addressed memory location. Such manipulation depends on a neigh-
borhood property and usage of a Structure-of-Arrays memory layout for population data.

Definition 1.1 (Location invariance of neigborhood distance). Let x, y ∈ C be a pair of
locations in cuboid C. The one-dimensional distance w.r.t. SFC mc : C → N0 is given by

δ : C × C → Z, (x, y) 7→ mc(x)−mc(y).

This distance is called location invariant iff

∀ξ ∈ Zd ∀x, y ∈ {x ∈ C|x+ ξ ∈ C} : δ(x, x+ ξ) = δ(y, y + ξ).

This invariance of the one-dimensional or in-memory distance between all well-defined
spatial neighbor locations is the essential property employed for implicit propagation.
Curves for which this requirement holds enable streaming of all populations along their
respective discrete velocity directions by translation of the starting point.
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Definition 1.2 (Implicit Propagation). Let C be a cuboid with memory bijection mc

fullfilling Definition 1.1, ξ ∈ Zd a discrete velocity and t the current time. The memory
access function

pt : Z → R

returns the current population values for all x ∈ mc(C) at time t and dummy values for
x ∈ Z \mc(C). Propagation of a population at x ∈ C in timestep t to x+ ξ ∈ C at time
t+ 1 is equivalent to

pt+1(mc(x+ ξ)) = pt(mc(x)).

Due to invariance of the neighborhood distance the memory access function pt+1 can be
defined as

pt+1 : x 7→ pt(m̃c(x)) where m̃c : x 7→ mc(x) + δ(x, x+ ξ)

while being equivalent to propagation along ξ for all x ∈ {x ∈ C|x + ξ ∈ C}. Note that
pt+1 is simply a shifted view of the original memory function pt. The propagation is thus
performed implicitly.

It can be shown that the Sweep SFC is the only discrete SFC that fullfills the location
invariance of neighborhood distances. Shift-Swap-Streaming [2] (SSS) and Periodic Shift
(PS) differ in the way that the indexing function is shifted resulting in different memory
access patterns and performance results as well as isotropy properties. Existing patterns
such as A-A [1] and A-B can also be formulated in this context.
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Figure 1: Propagation without data transfer by control structure update in PS on a D2Q9 lattice
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2 PERIODIC SHIFT
The novel Periodic Shift pattern eliminates the need for padding and reverted stores

present in SSS by viewing the individual population arrays as cyclic. The streaming step
then consists only of rotating the arrays by their propagation distances. In this context
the implementation challenge is to perform rotation of such cyclic arrays as efficiently as
possible. Approaches using pre-computation of pointers to eliminate modulo operations
and page table modifications to utilize virtual address translation (enabling the usage of
SIMD intrinsics) are discussed and evaluated.

PeriodicShift(D, fold)

1 // Rotate the cyclic arrays along the distances given by discrete velocities
2 for iPop ∈ {1, . . . , D.q}
3 fnew[iPop] = rotate (fold[iPop],ShiftOffset(D.c[iPop]))
4 return fnew

3 BENCHMARKS
Detailed single-node CPU and GPU performance evaluations are performed using

benchmark implementations based on SIMD intrinsics resp. CUDA and expression-
level code optimization (CSE). All performance results are related to memory bandwidth
measurements and achieve saturation up to 99%. Scalability benchmarks comparing to
SWAP [3] use the OpenLB [4] framework which employs PS starting from version 1.4.
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Figure 2: Performance for SSS and PS on Intel Xeon Phi using AVX-512 and OpenMP
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Figure 3: Speedup and efficiency for SWAP and PS using OpenLB and OpenMPI
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