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Summary. Heterogeneous systems are a consolidated trend among the pre-exascale systems.  
High fidelity computational fluid dynamics simulations are one of the scientific problems 
with the potential to fully utilize these systems. New implementation models are required to 
engage the different components within the heterogeneous node. We propose a co-execution 
model that permit to utilize concurrently the CPUs and GPUs on high fidelity simulations. 
Using the co-execution, an acceleration of 25% is attained when comparing with a GPU-only 
execution. 

 
 
1 INTRODUCTION 

High fidelity Computational Fluid Dynamics simulations for turbulent flows entail very 
large computing requirements, which are progressively acute with each new generation of 
supercomputers. In order to efficiently exploit the available resources, specific 
implementations must then be investigated. In this work, we present the implementation of a 
parallel Navier-Stokes solver for heterogeneous architectures. 

 The numerical model is based on the low-dissipative scheme presented in [1], where a 
conservative discretisation of the convective term is considered. As far as time discretisation 
is concerned, a Runge-Kutta (RK) scheme is employed for the explicit solver and an implicit– 
explicit (IMEX) RK method for the explicit/implicit solver. The LES model is the Vreman 
model [2], and the wall model is implemented at the element level, thus avoiding an extra 
loop on the boundaries of the computational domain and the risky definition of local basis [3].  

On the computational side, all levels of parallelism are exploited. At the supercomputer 
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level, a classical MPI-based parallelization is considered together with dynamic partitioning. 
At the node level, the solution is based on a co-execution paradigm for the efficient use of 
heterogeneous CPU/GPU architectures, together with a dynamic load balancing mechanism to 
correctly account for the heterogeneity of the architecture [4]. The co-execution enables to 
maximise the use of the available devices by executing some kernels concurrently on both 
CPUs and GPUs. The assessment of the performance of all the proposed strategies has been 
carried out on the POWER9 architecture accelerated with NVIDIA Volta V100 GPUs 
 
2 SIMD AND STREAM PROCESSING 

Nowadays, all CPUs have integrated vector registers that allows to perform arithmetic 
operations in a Single Instruction Multiple Data (SIMD) execution model. On the other hand, 
GPUs are composed of stream multiprocessors (SM) that execute threads concurrently in an 
execution model that is similar to SIMD. Context switching is used to maintain thousands of 
threads active and hiding the memory latency. Keeping the threads active is known as 
occupancy and it is one of the main factors to attain maximum performance in GPU 
computing. For this purpose, the kernel workload has to be divided in threads with low 
register and shared memory requirements. Additionally, special attention is needed to the 
creation of new data structures. The SIMD model used by the CPUs and the stream 
multiprocessors needs of coalesced and aligned memory accesses for optimal performance.  
Random memory accesses serialize the execution of the memory calls and decrease the 
overall performance. A data structure that benefits CPU and GPU execution has been 
developed. First, are numbering is introduced with the objective of grouping the elements of 
the same geometrical type. Within each subgroup, the elements are packed in sets of 
VECTOR SIZE elements. If the number of elements in the subgroup is not multiple of 
VECTOR_SIZE, then zeros are padded at the end of the pack to maintain the regularity.  
Whenever is possible, the operations of elements within a pack are executed in SIMD mode. 
VECTOR_SIZE depends on the architecture in which the simulation will be executed. In 
CPUs, its size is related to the vector register width, and in GPUs determines the number of 
threads within a block. 
 

 
Figure 1 shows the data structure organization for a mesh with 25 elements TRI03, 18 elements QUAD04 and a 

VECTOR_SIZE=4 
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3 COMPUTING FACILITIES 

Following the current trend in HPC node design, the POWER9 nodes are high throughput 
heterogeneous nodes. Each compute node has 2xPOWER9 8335 @3.0 GHz with 20 physical 
cores each.  With 4 SMT threads per core, each node can run up to 160 CPU threads. The 512 
GB of main memory is distributed in 16 DIMMS of 32 GB each operating at 2666MHz. The 
4 Volta V100 accelerators have a 7.8 TFLOPS double precision peak performance giving 
each one a total of 30.8 TFLOPS. The POWER9 nodes include high throughput NVLINK 2.0 
connectors. Each GPU has 6 NVLINK connectors, which are attached to the neighboring 
GPU as well as CPU, giving an aggregate bandwidth of 150GB/s for GPU to GPU as well as 
GPU to CPU communication. Details on the node architecture can be found in Figure 2. 

 

 
Figure 2 Power 9 cluster configuration. 

 

4 PRELIMINARY RESULTS 
The co-execution strategy consists in generating two executables of the CFD code. Each 
executable is compiled with the optimized parameters for a computing architecture (CPU or 
GPUs).  Then, the execution follows a Multiple Program Multiple Data (MPMD) strategy in 
which each compiled version resolves a proportional part of the full simulation. A load 
balancing strategy is utilized for finding the workload on CPU and GPU. The preliminary 
results using the co-execution show that an airplane simulation is solved 25% faster than 
using only the four GPUs of the Power9 node. This encourages us to continue studying this 
execution strategy. 
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