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Abstract. An algebraic linelet preconditioner is presented, which works in parallel re-
gardless of the mesh’s geometry and without imposing constraints on the domain parti-
tion. It is designed to deal with highly anisotropic meshes. A key aspect of this work
is developing an algorithm that generates the preconditioning matrix by purely algebraic
considerations. This preconditioned is coupled to Alya, the in-house HPC multi-physics
code developed at Barcelona Supercomputing Center.

1 INTRODUCTION

Navier-stokes equations for incompressible flows can be solved using the fractional
step projection method, by which the pressure solution is decoupled from the rest of
the equations. In this context, a Poisson’s equation for the pressure correction equation
needs to be solved at least once per time-step on this scheme [2]. This step represents
the primary source of performance bottlenecks of the code and is one of the most time-
consuming and difficult to parallelize. Furthermore, when problems involving boundary
layer flow need to be simulated, highly anisotropic meshes are employed to accurately
describe this critical region. Such compression of the mesh degrades the conditioning
of the linear system associated with the Poisson equation. This makes the solver even
more expensive in terms of time and computational resources employed. Figure 1 shows
an example of a mesh for the numerical simulation of an airplane wing; here, the nodes
located in the prismatic boundary layer represent the 46.7% of the total nodes. Thus its
impact on Poisson’s equation discretization is not negligible.

Motivated by these facts, we developed a parallel preconditioner able to boost the per-
formance of the Preconditioned Conjugate Gradient (PCG) solver for meshes with high
anisotropy in the boundary layer. In particular, we aimed to extend the capabilities of
the linelet preconditioner [5]. This kind of preconditioner considers only the two strongest
couplings for each node of the boundary layer. As a result, the system is decomposed
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(a) (b)

Figure 1: Example of a mesh for the numerical simulation of an airplane wing (Figure a) and
zoom of the same mesh showing the prismatic boundary layer (Figure b).

into a set of one-dimensional tridiagonal subsystems. A fully algebraic approach inde-
pendent of the mesh partitioning is presented, which works for Finite Elements (FE),
Finite Differences (FD), and Finite Volumes (FV) methods. The authors are not aware
of publications with linelet preconditioner implementations of similar capabilities.

2 Algorithm

Linelets are assembled, choosing the highest couplings between nodes. Algebraically,
the linear system matrix A is approximated by a given matrix M , which consists of the
same diagonal entries as A and some of the non-diagonal ones. Hence building matrix M
can be thought of as filtering matrix A.

The main idea of the algorithm is as follows. Suppose we start with an initial symmetric
matrix A as in Figure 2a. From each row, we select either one or no element Aij from
the non-diagonal entries located at one side of the main diagonal, for example, Ai, j > i
(Figure 2b). One important constraint to this selection is that from every row and every
column, either none or one element is chosen, i.e., there can not be two or more selected
entries occupying the same row or column. Finally, every non-diagonal coupling Aij,j 6=i

that has not been selected is filtered and considered the selected elements and their
symmetric counterparts. We then get Figure 2c. Note that each node will be coupled at
most with two other nodes (Figure 2d).

(a) (b) (c) (d) (e)

Figure 2: Algorithm for building a linelet preconditioning matrix algebraically: a) Input matrix,
b) Filtering matrix, c) Filtered matrix, d) Linelet structure.
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The second step is to solve the system Ms = r for s, for which the TDMA [3] is com-
bined with a Dual Schur Decomposition Method [4], in order to deal with the situation of
linelets traversing various subdomains. It is important to note that this operation requires
just one communication step to replicate the total interface values in each subdomain.

3 Preliminary Results

Alya[1], our in-house HPC multi-physics code developed in our research group, already
has an in-built linelet preconditioner to deal with highly anisotropic meshes. Nevertheless,
it works by assembling the linelets within each subdomain without allowing communica-
tions between them.
A Preconditioned Conjugate Gradient (PCG) solver was developed, which allows the
linelets to spread over an arbitrary number of processes. Up to this moment, this solver
works for structured meshes and builds the linelets by geometric consideration. However,
we aim to extend it to non-structured meshes and to implement the algorithm described
in 2 to build the preconditioning matrix algebraically.

Comparing both cases mentioned above, it was studied how cutting the linelets affects
the convergence of PCG. For this to be done, the global domain was partitioned in the
z direction. Each subdomain had its own set of linelets, disconnected from the rest. An
example was run for a cubic mesh whose dimensions were 160 × 240 × 128 (expressed in
nodes, the number of nodes in each direction will be represented by Nx, Ny and Nz). The
mesh is refined in the z-direction, being the mesh highly compressed near z = 0 and with
refinement function

∆zi = 2H −H

{
1 +

1

tanh(ρ)
tanh

[
ρ(1 − i+ i0

Nz

)

]}
, i=1,...,Nz. (1)

Figure 3 shows the number of iterations needed for a different amount of partitions.

Figure 3: Number of iterations required to achieve a residual lower than 10−6 for different
number of partitions in the z direction, ρ = 1.
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It can be seen from Figure 3 that if linelets are spread over many processes but there
is no communication between its different sections, the solver needs to perform more
iterations to reach the same tolerance. This result justifies the use of a direct parallel
solver like the Dual Schur Decomposition Method. For all the cases shown in Figure 3, it
was asserted that when the Schur algorithm is implemented into the solver, both the final
residual and the difference with the exact answer were the same as in the no partitions
case (linelet partitions equal to 0 in Figure 3).

4 Conclusions

To sum up, in this work will it will be developed an algebraic linelet preconditioner, to-
gether with all the computational and algorithmic tools required for it to work in parallel
regardless of the geometry of the problem and the domain partition. This preconditioner
will then be coupled to Alya, the in-house HPC multi-physics code developed in our
research group. In the final work, the solver will be assessed from the scalability and
robustness point of view using meshes similar to those shown in Figure 1, coming from
relevant for aeronautical applications.
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