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Abstract. In this work, we interfaced to the Alya code the development version of
a software framework for efficient and reliable solution of the sparse linear systems for
computation of the pressure field at each time step. We developed a software module in
Alya’s kernel to interface the current development version of the PSBLAS package (Paral-
lel Sparse Basic Linear Algebra Subroutines) and the sibling package AMG4PSBLAS. PS-
BLAS implements parallel basic linear algebra operations and support routines for sparse
matrix management tailored for iterative sparse linear solvers on parallel distributed-
memory computers, supporting heterogeneity at the node level. It has gone under exten-
sion within the EoCoE-II project with the primary goal to face the exascale challenge.
AMG4PSBLAS is a package of Algebraic MultiGrid (AMG) preconditioners built on the
top of PSBLAS, which inherits all the flexibility and efficiency features of the PSBLAS
infrastructure, and implements up-to-date AMG preconditioners exploiting aggregation of
unknowns for the setup of the AMG hierarchy. Many preconditioners employing different
aggregation schemes, AMG cycles, and parallel smoothers are available and were tested
within the simulation carried out with the Alya code. Results show that the new solvers
vastly outperform the original Deflated Conjugate Gradient method available in the Alya
kernel in terms of scalability and parallel efficiency and represent a very promising software
layer to move the Alya code towards exascale.
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1 INTRODUCTION

Alya is an HPC-based multi-physics simulation code developed at BSC that has been
designed to run efficiently in parallel supercomputers. Its target domain is engineering,
with complex geometries and unstructured meshes. Based on a finite element discretiza-
tion in space and both explicit and implicit time discretizations to solve compressible and
incompressible flow problems, solids mechanics, and thermal coupling. Its scalability has
been tested up to 100K cores. When implicit time discretization is used, the two main
computational kernels are the creation of a matrix and right hand and the solution of
the corresponding linear system. The second kernel is much more challenging for paral-
lelization than the first one. As the problem’s size increases, the communication between
the different processors becomes more complicated and challenges scalability. In previ-
ous work, it has been shown Alya’s scalability is not significantly compromised by this
problem. However, as is well known, as the problem’s size increases, a second problem of
mathematical nature, challenges scalability: the number of iterations needed to converge
to a specific tolerance increases when Krylov based solvers are used to solve the linear
system. In Alya’s own linear algebra package, this can be somehow alleviated but not
overcome by deflation. Algebraic Multigrid can provide a much better weak scalability
for unstructured grids but is much harder to code. In this work, we have preferred to
interface Alya to the PSBLAS package (Parallel Sparse Basic Linear Algebra Subroutines)
and of the sibling package AMG4PSBLAS [1].

2 INDUSTRIAL APLICATION

Figure 1: Flow over the Bolund cliff
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Two real-world incompressible computational fluid dynamics problems are solved using
the Vreman [2] Large Eddy Simulation turbulence model. The velocity is discretized
explicitly using a 3rd order Runge Kutta scheme [3], and the pressure is treated implicitly.
A low dissipation scheme based on pure Galerkin discretization and an EMAC (energy,
momentum, and angular momentum conserving) scheme for the convective term lead to
an efficient and accurate method free from numerical parameters [3]. A non-incremental
fractional step method stabilizes the pressure and allows for equal order interpolation of
velocity and pressure unknowns. The pressure field is obtained at each step by solving a
discretization of a Poisson-type equation. PSBLAS package (Parallel Sparse Basic Linear
Algebra Subroutines) and the sibling package AMG4PSBLAS are used to solve for the
pressure with a Conjugate Gradient solver preconditioned with algebraic multigrid.

The first test case is based on the Bolund experiment, a classical benchmark for mi-
croscale atmospheric flow models over complex terrain [13]. Both strong and weak scal-
ability tests are performed with an initial unstructured mesh of tetrahedra with 5.6M
nodes. For weak scalability tests fixing different mesh sizes per cores, the mesh is uni-
formly refined [4] up to 358M nodes and tested up to 12288 cores. At each time step,
we solve the spd linear systems arising from the pressure equation from an initial guess
for pressure from the previous step and stop iterations when the Euclidean norm of the
relative residual is not larger than TOL = 1e-3. A general row-block data distribution
based on Metis 5.1 is applied for the parallel runs. The simulations have been performed
with the Alya code interfaced to PSBLAS and AMG4PSBLAS, built with GNU com-
pilers 7.2, on the Marenostrum 4 Supercomputer composed of 3456 nodes with 2 Intel
Xeon Platinum 8160 chips with 24 cores per chip (ranked 30 in the Top 500 list [2], with
more than ten petaflops of peak performance), operated by BSC. The facility was made
available by a grant dedicated to the EoCoE II project from PRACE. Figure 1 shows a
volumetric of the velocity field over the Bolund cliff.

The second test case is based on the NASA Common Research Model [5], a simplified
geometry of a passenger aircraft. An initial mesh with 250M elements is used. Uniform
mesh subdivision [4] is applied to reach 2000M elements to test weak scalability. De-
spite this second problem deals with external aerodynamics while the first one deals with
Atmospheric Boundary Layer flow over complex terrain, the solutions strategy is nearly
identical. Figure 2 shows streamlines of the flow around the wing.

To tests the solvers under realistic conditions, the cases are run on the coarse mesh
until the flow is fully developed. The solution from the coarse mesh is used as an initial
condition on the uniform subdivided mesh. The simulation is run further in the subdivided
mesh until the solver’s number of iterations stabilizes. 0.1 seconds are needed in the
Bolund case. This velocity field is used as the initial condition for the solver convergence
tests.

3 INITIAL RESULTS

To test the weak scalability of Alya with PSBLAS and AMG4PSBLAS, we have initially
used the Bolund case. The initial mesh of 5.6M nodes was automatically uniformly refined
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Figure 2: Flow around the NASA Common Research Model

Cores Total Unk. Av. Unk. per core Mesh divisors Iterations CPU time [s]

48 5.6M 117k 0 5 0.67
96 5.6M 58k 0 5 0.33
192 5.6M 29k 0 5 0.17
384 44.8M 117k 1 8 1.02
768 44.8M 58k 1 8 0.53
1536 44.8M 29k 1 8 0.28
3072 358.4M 117k 2 4 0.72
6144 358.4M 58k 2 4 0.38
12288 358.4M 29k 2 4 0.25

Table 1: Number of iterations and CPU times

[4] to elements with one half the size leading to a mesh with eight times more nodes. A
second refinement leads to elements with one quarter the size of the original mesh and
350M nodes. For each of the meshes, runs with three different numbers of elements were
performed, leading to 9 nine runs. In Table 1, the number of iterations, CPU time, and
key data for each run is summarized. For each of the meshes, the number of iterations
is not altered by the number of cores used. One can see that the number of iterations
increases when the first divisor is applied. However, it is later reduced with the second
mesh divisor’s application leading to excellent algorithmic scalability. This scalability can
not be obtained with Krylov iterative solvers (not even with Deflation) available in Alya’s
linear Algebra package.

While looking at the number of iterations, we can verify that multigrid preconditioning
has allowed Alya to overcome Krylov iterative solvers’ limitations. The most critical
parameter for Alya’s users is the CPU time. For the CPU time to scale correctly, we need
good mathematical behavior and satisfactory HPC implementation. When going from
the original mesh to one with 64 times mores nodes, we observe a very good weak scaling
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for the two simulations with a higher load per core. When the average number of nodes
per core falls to 29k, the weak scalability suffers slightly but is still acceptable. When
compared to Alya’s implementation of the Deflated Conjugate Gradient, which takes 0.86
seconds on the finest mesh with 12288 cores, we see that PSBLAS/AMG4PSBLAS is
3.4 times faster. Moreover, on the finest mesh, PSBLAS/AMG4PSBLAS is faster with
3072 cores than Alya’s solver with 12288 cores. From the trends we have observed, it is
clear that as we move to larger problems in the path to exascale, the advantage of using
multigrid will become even more noticeable.

4 CONCLUSIONS

Until recently, Alya has relied mainly on in-house developed code and minimized the
usage of external libraries. The advantages are better control of Alya’s evolution, ease
of compilation, and guaranteed portability among different supercomputing platforms.
However, minimizing the usage of external libraries has not allowed us to count with opti-
mal linear algebra packages. Thanks to the collaboration established within the EoCoE II
project, we are now starting to interface more with external libraries. While this does not
mean that we need to abandon our developments, it gives us an alternative to overcome
the limitations we faced in the past. In previous weak scalability studies with Alya [6]
for a kiln furnace, it has been observed that convergence of the pressure degrades with
the mesh size. Usage of the PSBLAS and AMG4PSBLAS has allowed Alya to obtain
satisfactory weak scalability results for, including the pressure solution, the first time.

While the presented results are an essential step in the path of Alya towards exascale,
the suitability of PSBLAS and AMG4PSBLAS for a wider range of problems needs to be
tested. Moreover, porting to other supercomputers must be performed. Alya is one of
the two CFD codes of the Unified European Applications Benchmark Suite (UEBAS) as
well as the Accelerator benchmark suite of PRACE. It would be ideal to include Alya test
cases that use PSBLAS and AMG4PSBLAS in such benchmarks. It is worthwhile men-
tioning that, for the moment, we have only tested the CPU implementation of PSBLAS
and AMG4PSBLAS. Both libraries have already been ported to GPUs and tested in EU
leading supercomputers such as Pizdaint. Finally, we would like to mention that inter-
facing with PSBLAS and AMG4PSBLAS has been far cheaper than trying to implement
equivalent algebraic multigrid solvers inside Alya.
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