
ParCFD’2020
32nd International Conference on Parallel Computational Fluid Dynamics

May-11-13 2020, Nice FRANCE

INCLUDING MODEL UNCERTAINTIES IN SEISMIC FULL
WAVEFORM INVERSION

Tristan van Leeuwen∗ and Yuzhao Lin†

∗ Utrecht University
Mathematical Institute

Utrecht, the Netherlands
e-mail: t.vanleeuwen@uu.nl

†China University of Petroleum (East China)
266555, China

Key words: Full waveform inversion, model uncertainties

Abstract. Full waveform inversion aims to estimate detailed maps of subsurface medium
parameters from seismic data. It is typically cast as a non-linear least-squares problem
involving a non-linear forward operator that simulates wave propagation in the earth. In
this paper, we incorporate model uncertainties in the problem. This leads to an alternative
formulation of full-waveform inversion that has several advantages. In particuar, the
resulting method is more robust to errors in the forward operator and initialisation of the
non-linear inversion procedure. A disadvantage is its high computational cost resulting
from the need to invert a large dense matrix. We adress this issue by assuming a particular
form of the covariance matrix corresponding to the modelling errors. This allows to use
the Woodbury matrix identity to invert the dense matrix explicitly. Numerical examples
illustrate the performance of the method.

1 INTRODUCTION

Full waveform inversion aims to estimate detailed maps of subsurface medium param-
eters m from seismic data d [3]. It is typically cast as a non-linear least-squares problem
involving a non-linear forward operator F that simulates wave propagation in the earth

min
m

ns∑
i=1

‖Fi(m)− di‖2, (1)

with ‖ · ‖ denoting the L2-norm. The seismic data consists of ns shot-records, each
consisting of nr time-series. The forward operator simulates the data by solving a wave-
equation with spatially varying coefficients, m, for a source qi and sampling the resulting
wavefield at all nr receiver locations as a function of time. We can then formally define
the forward operator as

Fi(m) = PA(m)−1qi. (2)

For typical scenarios we have ns = nr ∼ 103 − 106 and nt ∼ 103.
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2 METHOD

Taking into account errors in the measurement process as well as the physics, we obtain
the following extended formulation

min
m

ns∑
i=1

‖PA(m)−1qi − di‖2
Σ(m), (3)

where ‖ · ‖W denotes a weighted L2-norm. The weight is formally given by

Σ(m) =
(
PA(m)−1Σ−1

p A(m)−∗P ∗ + Σm

)−1
, (4)

where Σp and Σm represent the covariances corresponding to errors in the physics and the
measurements. More details on the derivation can be found in [1].

In practical settings all quantities are discretised and we represent m on a 2D or 3D
grid with nx gridpoints and discretise the temporal dimension using nt gridpoints. A shot-
record can then be represented as an M−dimensional vector, with M = nt × nr. This
results in Σ(m) ∈ RM×M . It is not feasible to explicitly compute this matrix as it would
involve N = nt × nx forward simulations. Moreover, it would not be feasible to invert a
dense matrix of this size. By choosing Σ−1

p seperately for each source as Σ−1
p = qiq

∗
i we

obtain a much more convenient weight-matrix

Σi(m) = (pip
∗
i + Σm)−1 , (5)

where pi = PA(m)−1qi represents the predicted data for the ith source (which needs to
be computed anyway). The inverse of this matrix can be computed explicitly using the
Sherman-Morrison inverse formula:

Σi(m) = Σ−1
m −

Σ−1
m pip

∗
i Σ
−1
m

1 + p∗i Σ
−1
m pi

, (6)

which simplifies even further with the typical choice Σm = σmI.
The gradient of the objective in (3) can be computed using the adjoint-state method.

Applying a steepest-descent method to minimize the objective, we end up with a basic
method to solve (3). The main steps involved are i) forward simulation to compute
pi = PA(m)−1qi; ii) deconvolution (using (6)) to compute the weighted residual r̃i =
Σi(m)−1(pi− di); iii) adjoint simulation to compute the gradient g; iv) a model update to
compute the next iterate m ≡ m− αg with stepsize α > 0.

More details on the implementation can be found in [2].

3 RESULTS

Preliminary results indicate that incorporating uncertainties in the forward model can
increase robustness of the approach to initialization of the non-linear inverse procedure [2].
Moreover, the computational cost of the proposed method is comparable to that of a con-
ventional full-waveform inversion. The settings and results of the numerical experiments
are presented in figures 1 and 2.
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Figure 1: True (left) and initial (right) model used in the numerical example. Observed data are
generated by simulating the response of ns = 10 equispaced sources located at the surface using a
finite-difference discretization of the wave equation in the temporal frequency domain (3 - 12 Hz). This
effectively results in nt = 9. The data are recorded at nr = 10 equispaced receivers. For the inverse
we use a multi-scale strategy, which proceeds from low to high frequencies. The stepsizes are computed
using the Borzilai-Borwein rule.
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Figure 2: Result using conventional FWI (left) and the proposed method (right). We observe that the
left result contains significant artifacts resulting from bad initialization. The result on the right is much
closer to the true model and is about as good as one can expect using the current acquisition parameters.
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