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Abstract. We present a series of strategies that can reduce the computational cost of full-
waveform inversion (FWI) by up to an order of magnitude for well-chosen but still widely
relevant cases. These strategies include the use of wavefield-adapted meshed, stochastic
gradient descent with dynamic mini-batches, and autotuning of stochastic FWI based on
factorised quasi-Newton methods.

1 INTRODUCTION

The Earth is a 3D heterogeneous medium that causes elastic waves travelling through
it to reflect, refract and scatter. The resulting wavefield complexity is a rich source of
information that is still far from being completely exploited. A central role in our quest to
improve images of the Earth’s interior – or other inaccessible bodies – is being played by
the comparatively recent development of full-waveform inversion (FWI) [1, 6]. Though the
term is not uniquely defined, most FWI implementations share the numerical simulation of
wave propagation through complex media, combined with adjoint techniques to compute
derivatives.

In addition to its undeniable success in providing images with unprecedented detail,
FWI is also notorious for its high computational cost. The No-Free-Lunch Theorem [4]
precludes, from the outset, the existence of an FWI variant that is universally more
efficient than other variants for all possible applications. This fundamental limitation
motivates the development of strategies that accelerate FWI in well-defined but still rea-
sonably broad classes of applications. Three of these strategies will be presented in this
contribution: (1) The use of finite-element meshes that are adapted to a priori knowledge
of wavefield geometry, (2) a stochastic gradient descent algorithm tuned towards seis-
mological datasets in order to exploit their inherent redundancy, and (3) an auto-tuning
approach based on quasi-Newton methods that may increase convergence of Hamiltonian
Monte Carlo FWI by orders of magnitude.
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2 WAVEFIELD-ADAPTED MESHES

The standard practice in numerical wavefield modelling is to use finite-element meshes
adapted to the structure of the medium. This includes the alignment of element bound-
aries along discontinuities, and the use of larger elements in regions with higher wave
speed.

The latter may be further reduced when prior knowledge about the geometry of the
wavefield is available. Arguably the most prominent cases in this class of applications are
radially symmetric Earth models that produce wavefields with exact azimuthal symmetry
with respect to the source location. This symmetry enables the reduction of a 3D wave
propagation problem to a quasi-2D problem, with corresponding savings in computational
cost [5].

In practice, the requirement of exact azimuthal symmetry may be relaxed. Earth
models that are smooth over length scales of several wavelengths, and which typically
result from tomographic inversions, still produce wavefields with approximate azimuthal
symmetry. This allows us to design finite-element meshes that are symmetric around
the source location and have only a small number of elements in azimuthal direction
[7, 8]. The latter depends on the smoothness of the medium and on the required solution
accuracy, largely dictated by observed data errors.

Though wavefield-adapted meshes, when interpreted as physical entities, cannot resolve
the adjoint field, the application of the discrete adjoint method [1] still provides the
correct sensitivity kernels. The combination of wavefield-adapted forward and adjoint
modelling enables FWI implementations that may require up to an order of magnitude
lower computational resources [7].

3 STOCHASTIC GRADIENTS AND DYNAMIC MINI-BATCHES

Datasets used in regional- to global-scale FWI are typically characterised by signifi-
cant redundancies, mostly resulting from the clustering of earthquakes in areas of elevated
seismicity. Building on the stochastic gradient descent concept, widely used in machine
learning, this redundancy can be exploited for the reduction of computational cost, with-
out sacrificing the quality of the reconstructed model [9, 10].

Realising that waveform data from nearby earthquakes do not carry independent in-
formation, stochastic gradient descent starts with the selection of a suitable subset of N
sources. Using adjoint techniques, the gradient of the subset, called a mini-batch, can
be computed and used to obtain an updated model. Subsequently, a new mini-batch is
selected quasi randomly, and the updating procedure is repeated. To ensure that a mini-
batch is large enough to approximate the gradient of the complete dataset sufficiently
well, its size can be adjusted. For this, we determine the number n ≤ N of sources within
the mini-batch, needed to approach the mini-batch gradient to within a pre-defined error.
The size of the mini-batch for the subsequent iteration is then set to a multiple of n.

Several synthetic and real-data inversions have shown that the dynamic mini-batch
approach may reduce computational cost by up to 80 % for realistic 3D scenarios. This
suggests that the method may be a game changer in FWI using earthquake datasets.
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4 AUTOTUNING HAMILTONIAN MONTE CARLO

Especially in the context of local-scale seismic exploration, FWI is a highly nonlin-
ear problem, characterised by the presence of local minima that result from the lack of
low-frequency information combined with the unavailability of good initial models. Ac-
counting for nonlinearity and multimodality in both model construction and uncertainty
quantification typically requires the application of Monte Carlo sampling.

While often considered to be of reach, stochastic FWI is about to become feasible
thanks to the development of Hamiltonian Monte Carlo (HMC) techniques that exploit
derivative information [2, 3]. An outstanding advantage of HMC is its tunability, which
enables very efficient variants of the algorithm. However, this advantage comes at the
cost of actually having to tune in order to prevent inefficiency.

The most relevant tuning parameters in HMC are the mass matrix M, the integration
time step ∆t, and the total integration time T . Though the optimal M is the local Hessian
of the misfit surface, useful approximations can be found via quasi-Newton algorithms,
and with the factorised L-BFGS algorithm in particular. Changes of M usually change
the properties of the numerical integrator, thereby requiring adaptations of ∆t and T . We
perform these adaptations automatically by monitoring the HMC acceptance rate, and
by making sure that it stays within a reasonable range, roughly between 0.6 and 0.95.

In a series of synthetic inversions, we are able to show that this autotuning approach has
the potential to increase the effective sample size of an HMC chain by more than an order
of magnitude, thereby further contributing to the practical applicability of HMC-based
FWI.

5 CONCLUSIONS

We presented a collection of strategies for the acceleration of FWI in well-chosen but
still widely relevant use cases. All of these are of purely algorithmic nature, and hence
come in addition to soft- and hardware-based improvements. Synthetic and real-data
inversions suggest reductions in computational cost by up to an order of magnitude.
This implies that these strategies may enable FWI without the need of supercomputing
resources and/or the use of significantly more data, potentially at higher frequency.
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