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Abstract. The Marchenko multiple elimination scheme retrieves primary reflections in
the two-way traveltime domain without model information or using adaptive subtraction.
The set of coupled equations that define the problem are solved by an iterative algorithm.
At each iteration, a convolution and correlation between the projected focusing function
and the measured reflection response are performed. After each convolution or correlation,
a truncation in the time domain is applied. After convergence, the resulting function is
used to retrieve the physical primary reflections. We demonstrate that internal multiples
are removed by using time-windowed input data that only contain primary reflections.

1 INTRODUCTION
The Marchenko algorithm can eliminate internal multiple reflections in reflection data

[1, 2]. The resulting fields can be used in imaging to create an image without reflection
artifacts caused by internal multiples [3]. The theory of the Marchenko Multiple Elimi-
nation (MME) is based on the work of [7] and introduced in [4]. Following their notation
the MME scheme is presented by

Rt(x
′
0,x

′′
0, t = t2) = R(x′

0,x
′′
0, t = t2) +

∞∑
m=1

M2m(x
′
0,x

′′
0, t = t2, t2), (1)

where Rt denotes the retrieved dataset without internal multiple reflections at constant
time t2 [5]. The reflection response R(x′

0,x
′′
0, t) at time t is measured with source and

receiver positioned at x′′
0 and x′

0, and is free from free-surface related multiple reflections
and source wavelet. To explain the multiple elimination terms M2m the summation in the
right-hand side of equation 1 is divided into two parts and evaluated for all times t:

k−
1,i(x

′
0,x

′′
0, t, t2) =R(x′

0,x
′′
0, t, t2)−

i∑
m=1

∫ +∞

t′=0

∫
∂D0

R(x′′′
0 ,x

′
0, t

′)H(t− t′ − ε)×

M2m−1(x
′′′
0 ,x

′′
0, t− t′, t2)dx

′′′
0 dt

′. (2)

M2m−1(x
′′′
0 ,x

′′
0, t− t′, t2) =

∫ +∞

t′′=0

∫
∂D0

R(x0,x
′′′
0 , t

′′)H(t′ − t+ t2 − t′′ − ε)×

M2(m−1)(x0,x
′′
0, t− t′ + t′′, t2)dx0dt

′′. (3)
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Figure 1: Creation of the event (labeled c1) that annihilates all the internal multiples between the first
and second reflector. Picture a) shows the shot record with internal multiples mi, b) is M0 created from
a) by convolution with a wavelet and time truncation below sample 200. Picture c) shows M1. Picture
d) shows the partly annihilated multiples in k−1,30 after 30 iterations. Note that k−1,30 is a partial solution
obtained for sample 200 and is not the final solution.

The constant ε indicates a small positive value which can be taken as the half source
time-duration in practice. H indicates the Heaviside function, which is used to apply
constant-time truncation window (ε, t2 − ε) in the equations. The acquisition surface
is located at the surface boundary ∂D0. The minus superscript in equation 2 refers to
upgoing wavefields at the surface. Equation 2 is the same as equation 1 with k−

1 (t =
t2, t2) = Rt(t = t2) [6]. We can evaluate equation 2 also for t ≥ t2 − ε and the equation
can be further split in the time domain as follows

k−
1,i(x

′
0,x

′′
0, t, t2) =

{
v−1,i(x

′
0,x

′′
0, t, t2) t < t2 − ε

u−
1,i(x

′
0,x

′′
0, t, t2) t ≥ t2 − ε

. (4)

The integral in equation 2 is a time domain convolution of R with M integrated over the
spatial coordinate x′′′

0 , which is the receiver position of the shot at x′
0. Equation 3 is a

time domain correlation of R with M integrated over the spatial coordinate x0, which
is the receiver position of the shot at x′′′

0 . The Heaviside functions H in these equations
separate the convolution/correlation result into an update part (v−1,i in equation 4) for
the next M2m and a solution part (u−

1,i in equation 4) to extract the time at t2. In each
iteration an updated field is computed by the integration of Mi with R.

The initialisation (M0) of the scheme is a copy of the time reversed shot record, from
which we would like to attenuate the internal multiples, and set to zero from the first
sample 0 to sample nt − nt2 + nε, where nt is the total number of samples. After the
initialisation the algorithm switches between the computation of the integrals in equations
2 and 3. M0 is inserted into equation 3, where a correlation and integration with R is
computed and the time-windowed result gives M1. This M1 is inserted into equation 2,
where it is convolved with R and the time-windowed result gives M2 and the first coupled
odd-even iteration is finished The algorithm continues by inserting M2 into equation 3
and stops when convergence is reached, typically after 10-15 iterations.
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Figure 2: Updates for k−1,i for a focal time at sample nt2 = 276 after i iterations. The arrow indicates
the first and second-order internal multiple between the first and second reflector.

2 MULTIPLE REMOVAL IN ACTION
The operation of the Marchenko algorithm is demonstrated with a four layer 1.5-

dimensional horizontally layered model. The results in Figure 1 are partial solutions of
the Marchenko equations computed for time sample nt2 = 200. After applying the time
window to the shot record in Figure 1a, which sets all samples in M0 to zero beyond
200 − nε, there are no internal multiple reflections present in M0. The times between 0
and sample 200 include the primary reflections r1 and r2, but not m1, see Figure 1b. In
the computation of M1 one extra event (c1 pointed with an arrow in Figure 1c) is created
to correct for the amplitude of the second reflector in k−

1 . This event is constructed
from the correlation between R and M0; c1 = r∗2.r1 + m∗

1.r2, where the ∗ means time-
reversal. The amplitude of this event c1 converges to the amplitude that can annihilate
the amplitude of the first multiple. Applying the converged c1 event on the reflection data
through equation 3, causes that all multiples arising from bounces between the first and
second reflector will vanish from the data in equation 1. The scheme finishes without ever
having ’seen’ the multiple; from r1 and r2 alone it created an event that can attenuate
all the internal multiples between these reflectors. The arrows in Figure 1d, that shows
k−
1,30(t), point at the multiples that are already partly gone. The multiples are only partly

removed because only a small offset-range of r2 is used at sample 200. Repeating the
scheme for samples larger than 200 will include larger offsets of r1 and r2 and attenuate
also the higher offsets for all internal multiples between r1 and r2.
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To demonstrate the effect of higher iterations the truncation time is chosen at sample
276: a first-order multiple of the second layer is now also present in the initialisation field
M0 after time-truncation. In the odd iterations the function k−

1,i(t), see equation 2, is
updated with the odd Mi(−t) terms and four selected iterations are shown in Figure 2.
After two iterations all orders of multiples are predicted, but with incorrect amplitudes.
In the following iterations the removal of higher-order multiples is improved because the
removal of the first-order multiple improves. After 20 iterations the internal multiple
events (indicated with arrows) have further attenuated and are not visible anymore; com-
pare Figure 2b with 2h. The higher-order multiples do not have to be removed by extra
events, but are removed automatically by removing the first-order multiple.

3 CONCLUSIONS
The MME algorithm has a straightforward mathematical expression, a simple numer-

ical implementation, and can eliminate internal multiples from reflection data by only
using time truncated shot records selected from that reflection data. Multiple annihilator
events are computed from primary reflections only. These events eliminate the first-order
internal multiples and hence the whole train of multiples associated with each first-order
multiple is eliminated as well.
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