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Abstract. The goal of the SimPEG package is to provide modeling and inversion tools
for geophysical datasets. As our users apply larger and larger data sets, we’ve identified
areas and pathways for scaling SimPEG to larger clusters. These primarily exploit the
natural parallelism from solving partial differential equations with multiple independent
source terms. We further parallelize the problem with the use of a localized meshing
approach. Dask allows us to develop these algorithms independent of the computing
environment and monitor them as they are running.

1 INTRODUCTION

SimPEG was designed to be a tested open-source resource for geophysicists looking
to tackle common parameter estimation problems [1]. This Python package was devel-
oped with the inverse modeling in mind, mostly focussing on simulating and inverting
potential fields, electrical, and electromagnetic data. It also supports straight ray tomog-
raphy and fluid-flow modeling; extending support to other methods is a welcome area for
contribution.

SimPEG is used by many different groups with a range of programming skills and
knowledge. Undergraduate students use it to explore the fundamentals of various geo-
physical surveys, e.g. visualizing electromagnetic fields in conductive media.. Researchers
use it to develop new inversion methodologies and extend SimPEG functionality. Industry
members test the scalability of the code to large airborne surveys. The package enables
an open-source community to work together to tackle some of the higher level problems
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without having to completely understand the intricacies of implementing derivatives. It is
designed to be modular and follow a framework that allows the users to plug in different
aspects of a problem to suit their needs.

Most SimPEG simulation capability is designed around solving the elliptical or parabolic
partial differential equations (PDE) describing the geophysical systems, and minimizing
functions involving them. In general, we solve the PDEs to obtain predicted data, in a
manner that is generalizable to the discretization scheme. There are also a subset of the
geophysical methods that have analytic or integral implementations, including potential
field methods. Our inversion mechanics are primarily focused around Gauss-Newton like
methods, which require operators for Jacobian-vector products. This enables us to define
derivatives and approximate Hessians operators necessary to minimize non-linear least
squares functionals.

2 PARALLELIZATION STRATEGIES

SimPEG is typically used to solve underdetermined geophysical inversion problems,,
where the number of data is less than the number of unknown parameters. This leads to
a regularized minimization function:

φ(m) = ||Wd (dobs −F [m])) ||2 + β||Wm(m−mref )||2. (1)

We approach the minimization operation using the Gauss-Newton strategy [2], where we
solve a system of equations to obtain a step direction at each iteration, k,

(JTW T
d WdJ + βW T

mWm)δm = JTW T
d Wd(dobs −F [mk])− βW T

mWm(mk −mref ), (2)

where J is the Jacobian of the forward operation, F . We solve equation 2 by conjugate
gradient (CG) which requires us to define operators for J and JT times a vector. A
valid SimPEG invertible simulation knows how to predict its data, how to multiply the
Jacobian times a vector, and the adjoint operation of a Jacobian transpose times a vector,
which are the operations we focus on parallelizing.

For the numerical PDE based simulations in SimPEG, (i.e. direct current resistivity,
or time/frequency domain electromagnetics), there are often many sources with different
locations and frequencies. The PDE forward solutions and Jacobian-vector products of
these problems require repeated sparse matrix solutions for many different right-hand side
source terms. This is the clearest embarrassingly parallel portion of SimPEG, and indeed
most sparse matrix solvers will perform this in parallel when given multiple right hand
sides. We can break each repeated solve operation up amongst the sources in parallel.

These operations assume that we can solve the sparse system of equations on a single
machine, but with large models this becomes infeasible. For each observation point (or
a small collection of them), we can create a mesh that is accurate locally, but coarsens
away from that point [3]. This allows us to accurately compute solutions for each receiver,
while reducing the computational requirements of sparse matrix solutions, or reduce time
spent calculating analytic functions (Figure 1). This approach is independant for each
observation point and has been used to parallelize large scale inversions [4].
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Figure 1: A local OcTree mesh for a set of magnetic observations. The inversion is solved on the entire
domain at the finest level, but sensitivities and forward solutions are computed on the many local meshes
in parallel.

Another area where inversion can be parallelized is the explicit formation of the Ja-
cobian matrix. If there is enough storage space to hold the matrix either in memory or
on disk, there are potential time savings. Forming the Jacobian matrix requires a matrix
solution for each observed data point, which is also embarrassingly parallel. Even though
this may seem like more operations compared to the implicit operation, it scales well on
clusters and can be advantageous when performing increased CG iterations to solve equa-
tion 2. We also have access to improved preconditioners for CG, making the iterations
more effective.

3 Dask

Having identified these areas of potential scalability for SimPEG, we chose to implement
the parallel portions using Dask [5]. Dask consists of two parts: a dynamic task scheduler
that distributes operations across clients and parallel data collections. SimPEG, like
many scientific python packages, makes heavy use of numpy operations. Dask is designed
to mimic the numpy API which allows us to integrate it into the SimPEG framework
with few changes. Dask will analyze computations involving distributed arrays to create
a task graph that can be executed in parallel and will handle communication between
clients when necessary to complete those tasks. Dask’s parallel data collections allow for
arrays to be distributed across multiple files, integrating capability for compressed array
storage, or in distributed ram. Taken together, these allow for SimPEG’s simulations to
scale across clusters using the parallelization strategies we previously identified.

Most of our users interact with the package through Jupyter where they create their
Python code in interactive environments, monitor their running code, or inspect variables
during execution. One of our parallelization goals with SimPEG is to keep this function-
ality when scaling from local machines up to larger cluster computers, with minimal code
changes. Dask decouples the API for parallelization from the type of hardware it runs
on, which simplifies the implementation and the porting of prototype-code in scripts and
Jupyter notebooks from a local machine to a cluster or to the cloud using Dask-Jobque or
Dask-Kubernetes, respectively. From a user-perspective, only the definition of the cluster
where you will run your code changes. Dask’s schedulers also allow users to code inter-
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actively on those machines within Jupyter notebooks and monitor task distribution and
execution times (Figure 2).

Figure 2: You can monitor currently running tasks and visualize how they are distributed and executed
over time. This graph will show any communication time in red, operations will be color coded to identify
common calls, and white space represents dead time.

4 CONCLUSIONS

SimPEG is in the early stages of being scaled to high performance computing. We
have identified a few possibilities to extend the package for our inversion mechanics to
perform well on clusters, parallelizing over different source locations and frequencies when
solving the numerical PDEs, as well as decomposing the inversion domain into smaller
local meshes that can be computed in parallel. Implementing these with Dask has al-
lowed our users to continue to interact with the code in a manner they are accustomed
to. Preliminary results show good task distribution for these operations with minimal
communication overhead.
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