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Abstract. Recent years have seen a massive explosion of datasets across all areas of
science and engineering. The central questions are: How do we optimally learn from
data through the lens of models? And how do we account for uncertainties in both
data and models? These questions can be mathematically framed as Bayesian inverse
problems. While powerful and sophisticated approaches have been developed to tackle
these problems, such methods are often challenging to implement and typically require
first and second order derivatives that are not always available in existing computational
models. In this talk, we present an extensible software framework MUQ-hIPPYlib that
overcomes these challenges by providing access to state-of-the-art algorithms that offer the
capability to solve complex large-scale Bayesian inverse problems across a broad spectrum
of scientific and engineering areas.
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1 Summary

Inverse problems arise in all areas of science, engineering, technology, and medicine
and are often governed by complex physics-based mathematical models. These models
are often subject to considerable uncertainties stemming from unknown or uncertain in-
puts (e.g., coefficient fields, constitutive laws, source terms, geometries, initial and/or
boundary conditions) as well as from noisy and limited observations. While many of
these input parameters cannot be directly observed, they can be inferred indirectly from
observations via an inverse problem. Bayesian inversion provides a framework for inte-
gration of data with complex physics-based models to quantify and reduce uncertainties
in model predictions [7]. Bayesian inversion with complex forward models faces several
computational challenges. First, characterizing the posterior distribution of the parame-
ters of interest or subsequent predictions often requires repeated evaluations of large-scale
partial differential equation (PDE) models. Second, the posterior distribution often has
a complex structure stemming from nonlinear parameter-to-observable maps and hetero-
geneous sources of data. Third, the parameters often are fields, which when discretized
lead to very high-dimensional posteriors.

Our objective is to create a robust and scalable software framework to tackle large-scale
PDE-constrained Bayesian inverse problems across a wide range of science and engineering
fields. hIPPYlib-MUQ [8] is a Python interface between two open source software pack-
ages, hIPPYlib and MUQ, which have complementary capabilities. hIPPYlib [17, 18]
is an extensible software package aimed at solving deterministic and linearized Bayesian
inverse problems governed by PDEs. Based on FEniCS [11, 10, 9] for the solution of
forward PDE problems and on PETSc [1] for scalable and parallel linear algebra oper-
ations and solvers, hIPPYlib implements globalized inexact Newton-conjugate gradient
methods, adjoint-based computation of gradients and Hessian actions, low-rank approxi-
mation of Hessians, and sampling from large-scale Gaussian fields; see [18] for the details.
MUQ [13] is a collection of tools for solving uncertainty quantification problems. MUQ
provides a suite of powerful uncertainty quantification algorithms including Markov chain
Monte Carlo (MCMC) methods [14], transport maps [12], polynomial chaos expansions [4],
Karhunen-Loeve expansions, and Gaussian process modeling [16, 6]. MUQ also provides
a framework for easily combining statistical and physical models in a way that supports
the efficient computation of gradients, Jacobians, and Hessian-vector products.

hIPPYlib-MUQ integrates these two libraries into a unique software framework, al-
lowing users to implement state-of-the-art Bayesian inversion algorithms for PDE models
in a seamless way. In this framework, hIPPYlib is used to define the forward model,
the prior, and the likelihood, to compute the maximum a posteriori (MAP) point, and
to construct a Gaussian (Laplace) approximation of the posterior distribution based on
approximations of the posterior covariance as a low-rank update of the prior [3]. MUQ is
employed to exploit advanced MCMC methods to fully characterize the posterior distri-
bution in non-Gaussain/nonlinear settings. hIPPYlib-MUQ offers a set of wrappers that
encapsulate the functionality of hIPPYlib in a way that various features of hIPPYlib can
be accessed by MUQ. A key aspect of hIPPYlib-MUQ is that it enables the use of MCMC
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methods enriched by the Hessian of the log likelihood [5], which is crucial for efficient and
scalable exploration of the posterior distribution for large-scale Bayesian inverse problems.
For example, the Laplace approximation of the posterior with the low-rank factorization
of the Hessian can be invoked to generate high-quality proposals for MCMC methods,
thereby significantly enhancing sampling efficiency [15].

hIPPYlib-MUQ also provides convergence diagnostics for MCMC samples: the po-
tential scale reduction factor and its extension to multivariate parameter cases [2], the
autocorrelation function, and the effective sample size. hIPPYlib-MUQ is designed for
general large-scale Bayesian inverse problems, not only for research and application in
diverse fields, but also for educational purposes.
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